100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

MMSR Summary Brightspace videos (MAN-MMA032A)

Puntuación
-
Vendido
-
Páginas
37
Subido en
29-01-2025
Escrito en
2024/2025

This document gives an overview of all the videos of MMSR on Brightspace. It gives a clear explanation of each technique used in MMSR and what it means in more simple words.It shows all the steps and techniques. It gives a detailed overview of what each step contains and how to do the SPSS part in that.

Mostrar más Leer menos
Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
29 de enero de 2025
Número de páginas
37
Escrito en
2024/2025
Tipo
Resumen

Temas

Vista previa del contenido

Brightspace filmpjes MMSR

Contents
Brightspace filmpjes MMSR....................................................................................................................1
Factor analysis (10-9)..........................................................................................................................2
Factor analysis video 1.1: introduction...........................................................................................2
Factor analysis video 1.2 – 1.5: conducting a factor analysis..........................................................2
AN(C)OVA (1-10).................................................................................................................................8
Introduction....................................................................................................................................8
Understanding the logic of ANCOVA/ANOVA..................................................................................9
Research process and application for One-way ANOVA................................................................10
N-way ANOVA...............................................................................................................................11
Assumptions & Interpretation of ANOVA / ANCOVA.....................................................................13
Regression Analysis (5-11)................................................................................................................17
Introduction..................................................................................................................................17
Process – Conducting a multiple regression analysis (MRA).........................................................18
Assumptions, estimation and model fit........................................................................................19
Issues in interpretation.................................................................................................................22
Moderating effects in MRA...........................................................................................................23
SEM with PLS (26-11)........................................................................................................................27
Introduction..................................................................................................................................27
Process of SEM.............................................................................................................................29
Assumptions and Requirements...................................................................................................31
Assessing measurement model....................................................................................................32
Assessing structural model...........................................................................................................35




1

,Factor analysis (10-9)
Factor analysis video 1.1: introduction
Factor analysis = estimate a model which explains variance/covariance between a set of observed
variables (in a population) by a set of (fewer) unobserved factors & weightings.
- Observed variables – survey, media. You want to understand the set between the observed
variables.
Main purpose of factor analysis is data reduction and summarization, so we want to reduce our
data and use it in other analysis like regression analysis, and these are the 3 ways to do it.

What is factor analysis?
- Interdependence technique
- Define structure among variables
- Interrelationships among large number of variables to identify underlying dimensions
(factors)
- Data summarization and reduction

Multi-item measurement
- Increases reliability and validity of measures
- Allows measurement assessment
o Measurement error
o Reliability
o Validity
- Two forms of measurement models:
o Formative (emerging) & Reflective (latent)

Reflective measurement model
- Direction of causality is from construct to measure
- Correlated indicators
- Takes measurement error into account at the item level
- Validity of items is usually tested with factor analysis

Picture right is the construct. We want to assess the factor loading to
each item which is noted with labda and we are also interested in the measurement error.
groen – variable?
donker blauw – labda (factor loading)
rood – construct
licht blauw – measurement error

Factor analysis video 1.2 – 1.5: conducting a factor analysis
Process for factor analysis/ analysis process:
- Problem formulation
- Construction correlation matrix of data we have collected
- Selecting extraction method
- Determining number of factors

2

, - Rotating the factors
- Interpreting factors
- Using factors in other analyses
- Determining the model fit
1. Problem formulation
The objectives of factor analysis should be identified data summarization or data reduction.
The problem formulation shows which variables we are going to measure. Criteria:
- based on past research, theory, and judgment of the researcher
- Measurement properties (ratio, interval)
- Sample size (4-5 * N per variable) (important)

Distinguish between exploratory factor analyses and confirmatory factor analyses:
- exploratory factor analyses: about exploration of the data.
o So interested in finding an underlying structure.
o Assumptions that superior factors cause correlations between variables.
o Reveal interrelationships
o Generation of hypotheses
- Confirmatory factor analyses:
o A priori ideas of underlying factors, derived from theory.
o Relationships between variables and factors are often conducted before the factor
analysis
o So it is often used for testing of hypotheses.

2. Construction correlation matrix of data we have collected
Factor analysis is - Analytical process is based on a matrix of correlations between the
variables. And thus we make a construction correlation matrix. Useful statistics:
- Kaiser-Meyer-Olkin (KMO) it tells you whether your sample adequately represents the
population. Should be above 0.5. the closer to 1 the better!
- Bartlett's test of sphericity: test the null hypothesis that the variables are uncorrelated in
the population. If the 0 hypotheses has to be accepted that means that no correlation has to
be existing in the population and then you wouldn’t be able to do factor analysis and thus is
this not what you often do and you want to reject the 0 hypotheses.
Bartlett should be significant and bartletts significant level should be smaller than 0.05.

3. Selecting an extraction method
Very important step. We have 2 types:
- Principal components analysis
o Looks at the total variance in the data
o Within the correlation matrix the Diagonal of the correlation matrix consists of
unities.
o Full variance is brought into the factor analysis
o Primary concern: minimum numbers of factors that will account for maximum
variance. Tries to maximize explained variance.
o The factors are called – principal components.
o Each variable is expressed as a linear combination of the components.
o The covariation among variables is described in terms of a small number of principal
components.


3

, - Common factor analysis
o Factors are estimated based only on the common variance
o Communalities (sharing interests) are inserted in the diagonal of the correlation
matrix
o Primary concern: identify the underlying dimensions and their common variance
o Also known as- > principal axis factoring
o Each variable is expressed as a linear combination of underlying factors.
o The covariation among the variables is described in terms of a small number of
common factors plus a unique factor for each variable.




Red – variance is extracted
White – variance is excluded (the unique
variance is excluded within the
communality)
Blue – principal model
Green – common factor




4
$12.55
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
vyneegilissen

Documento también disponible en un lote

Conoce al vendedor

Seller avatar
vyneegilissen Radboud Universiteit Nijmegen
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
4
Miembro desde
10 meses
Número de seguidores
0
Documentos
8
Última venta
1 mes hace

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes