Finite Mathematics & Its Applications
13th Edition by Larry J. Goldstein,
Chapters 1 - 12, Complete
, Contents
Chapter 1: Linear Equations and Straight Lines
p p p p p 1–1
Chapter 2: Matrices
p 2–1
Chapter 3: Linear Programming, A Geometric Approach
p p p p p 3–1
Chapter 4: The Simplex Method
p p p 4–1
Chapter 5: Sets and Counting
p p p 5–1
Chapter 6: Probability
p 6–1
Chapter 7: Probability and Statistics
p p p 7–1
Chapter 8: Markov Processes
p p 8–1
Chapter 9: The Theory of Games
p p p p 9–1
Chapter 10: The Mathematics of Finance
p p p p 10–1
Chapter 11: Logic
p 11–1
Chapter 12: Difference Equations and Mathematical Models
p p p p p 12–1
, Chapter 1 p
Exercisesp1.1 5
6.p Leftp1,pdownp
2
1. Rightp2,pupp3 y
y
(2,p3)
x
x
( )
–1,p –p52p
7.p Leftp20,pupp40
2. Leftp1,pupp4 y
y
(–20,p40)
(–1,p4)
x
x
8.p Rightp25,pupp30
3.p Downp2 y
y
(25,p30)
x
x
(0,p–2)
9. PointpQpisp2punitsptopthepleftpandp2punitspuppor
4. Rightp2
y (—2,p2).
10. PointpPpisp3punitsptoptheprightpandp2punitspdownpor
(3,—2).
x
(2,p0) 1p
11. —2(1)p+p (3)p=p—2p+1p=p—1sop yesp thep pointp is
3
onpthepline.
5. Leftp2,pupp1 1p
y 12. —2(2)p+p (6)p=p—1pisp false,p sop nop thep pointp isp not
3
onpthepline
(–2,p1)
x
Copyrightp©p2023pPearsonpEducation,pInc. 1-1
, Chapterp1:pLinearpEquationspandpStraightpLines ISM:pFinitepMath
1p 24.p 0p=p5
13 —2xp+p yp =p—1p Substitutep thep xp andp y nopsolution
3
. x-
coordinatespofptheppointpintopthepequation:
f 1p hıp f h intercept:pnonep
' ,p3 →p—2 ' 1 ı +p1p(3)p=p—1p→p—1+1p=p—1p is Whenpxp=p0,pyp=p5
y' ı 'p ı
py-intercept:p(0,p5)
2ppp J yp2J 3
apfalsepstatement.pSopnoptheppointpispnotponpt 25.pWhenpyp=p0,pxp=p7p
hepline. x-
f 1h f1 h intercept:p(7,p0)p0
14 —2 ' ı + ' ı (—1)p=p—1p isptruepsopyesptheppointpis p=p7
.
nopsolution
'y3 ıJppp'y3 ıJ y-intercept:pnone
onpthepline. 26.p 0p=p–8x
15.p mp=p5,pbp=p8 xp=p0
x-intercept:p(0,p0)
16.p mp=p–2pandpbp=p–6 yp=p–8(0)
yp=p0
17.p yp=p0xp+p3;pmp=p0,pbp=p3 y-intercept:p(0,p0)
2p 2p 1p
yp=p xp+p0;p mp=p ,p bp=p0 27 0p=p xp–p1
18 3
3 3 .
. xp=p3
19.p 14xp+p7pyp=p21 x-intercept:p(3,p0)
1p
7pyp=p—14xp+p21 yp =p (0)p–p1
3
yp =p—2xp+p3
yp=p–1
y-intercept:p(0,p–1)
20 xp—pyp =p3 y
. —yp =p—xp+p3
yp =pxp—p3
(3,p0)
21.ppp 3xp=p5 x
5 (0,p–1)
xp=p
3
1 2
28. Whenpxp=p0,pyp=p0.
22 – xp+ yp =p10
. 2 3 Whenpxp=p1,pyp=p2.
2p 1p y
yp =p xp+10
3 2
3p
yp =p xp+15 (1,p2)
4 x
(0,p0)
23. 0p=p—4xp+p8
4xp =p8
xp=p2
x-intercept:p(2,p0)
yp=p–4(0)p+p8
yp=p8
y-intercept:p(0,p8)
1-2 Copyrightp©p2023pPearsonpEducation,pInc.