100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

ST201 Notes

Puntuación
5.0
(1)
Vendido
4
Páginas
30
Subido en
12-05-2020
Escrito en
2019/2020

Covers all content in ST201 Statistical Models and Data Analysis at LSE

Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
12 de mayo de 2020
Número de páginas
30
Escrito en
2019/2020
Tipo
Notas de lectura
Profesor(es)
Desconocido
Contiene
Todas las clases

Temas

Vista previa del contenido

ST201 Notes

1. Nominal/Categorical: formed by categories that cannot be ranked, e.g. eye colour, religion.
2. Dichotomous/Binary: nominal variables with only two categories, e.g male and female,
alive and dead.
3. Ordinal: categories can be ranked but the distance between categories may not be equal
across the range; e.g. gears (1,2,3,4,5), exam results (A, B, C, D, E, U).
4. Continuous: variables can take any value in a range, e.g. speed, weight, time.




Mode: The value that occurs most frequently, if it exists
Median: The (½(n+1))th value; it is robust to outliers

Mean: 1 / n∑x = x bar; it is sensitive to outliers

Range: the difference between the highest and lowest values

Standard deviation or S.D.:




Pearson’s correlation r: ranges from -1 to +1




Spearman’s ρ also ranges from -1 to +1 but is based on the ranking of the values.

Specifically, it is defined as the Pearson correlation coefficient between the ranked variables
and is a more general correlation which can be applied to non-linear but monotonic
relationships.


Skewness

,It is important to extend univariate statistics to express the symmetry or lack of symmetry of
data.

For left skewness, mean < median < mode
For right skewness, mode < median < mean
For symmetry, mode = median = mean




Statistical Inference

The analysis of sample data to draw conclusions (inferences) about the population from
which the sample was taken.

Important terminology:

− Parameter: a value, usually unknown, used to represent a population characteristic – within
a population, a parameter is a fixed value – normally represented by a Greek letter. –

, Estimator: a rule for calculating an estimate based on sample data and used to approximate a
parameter from the population – normally represented by a Roman letter

The analysis of sample data to draw conclusions (inferences) about the population from
which the sample was taken.

− An Estimate is the value obtained after calculating an estimator using data from a particular
sample
– unlike a parameter, estimates are not fixed
– they vary across samples reflecting sampling variability

We can draw different samples and from each of them obtain an estimate to assess the
properties of a particular estimator.

In doing so it is vital that we use randomly picked samples (simple random samples), to
ensure that the samples are representative of the population.

The distribution of the different estimates obtained from each sample is known as the
sampling distribution.

The mean of this distribution is the point estimate and the observations around it, or the area
around it, constitutes the uncertainty

Ideally, we want unbiased and precise estimators.

The former requires the expectation of the estimator being equal to the population parameter,
e.g. E(X bar) = 

The latter requires that the standard deviation of the sampling distribution, i.e. the standard
error of the estimator (or SE), to be as small as possible.

Put another way, we require estimators to be close to the target population parameter and to
have small variance.

Central Limit Theorem

The key to statistical inference is the sampling distribution of an estimator.

According to the central limit theorem:

− for large samples (in practice size > about 30)
− from a population with mean μ and standard deviation σ
− the sample mean will be approximately normally distributed
− with mean μ and standard deviation σ/√n n
− regardless of how the population is distributed.


So, although we will usually just take one sample and obtain one single point estimate,
invoking the central limit theorem and the properties of a normal distribution, we can assess
the uncertainty surrounding such an estimate.
$7.59
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Reseñas de compradores verificados

Se muestran los comentarios
2 año hace

5.0

1 reseñas

5
1
4
0
3
0
2
0
1
0
Reseñas confiables sobre Stuvia

Todas las reseñas las realizan usuarios reales de Stuvia después de compras verificadas.

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
henryrayner London School of Economics
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
61
Miembro desde
7 año
Número de seguidores
43
Documentos
37
Última venta
9 meses hace

3.5

22 reseñas

5
2
4
10
3
8
2
2
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes