100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Solution Manual for Applied Partial Differential Equations with Fourier Series and Boundary Value Problems, 5th Edition (Haberman, 2012), Chapter 1-14 | All Chapters

Puntuación
-
Vendido
1
Páginas
84
Grado
A+
Subido en
13-01-2025
Escrito en
2024/2025

Solution Manual for Applied Partial Differential Equations with Fourier Series and Boundary Value Problems, 5th Edition (Haberman, 2012), Chapter 1-14 | All Chapters

Institución
Applied Partial Differential Equations, 5th Ed
Grado
Applied Partial Differential Equations, 5th Ed











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Applied Partial Differential Equations, 5th Ed
Grado
Applied Partial Differential Equations, 5th Ed

Información del documento

Subido en
13 de enero de 2025
Número de páginas
84
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

gfdsfd

SOLUTION MANUAL

Applied Partial Differential Equations with Fourier Series and Boundary Value
Problems (Classic Version)

by Richard Haberman
5th Edition
N
U
R
SE
D
O
C
S

All Chapters Included


All Answers Included




uytrewq

, gfdsfd All Chapters


Chapter 1. Heat Equation
All Answers
Section 1.2
1.2.9 (d) Circular cross section means that P = 2πr, A = πr2, and thus P/A = 2/r, where r is the radius.
Also γ = 0.
1.2.9 (e) u(x, t) = u(t) implies that
du 2h
cρ =− u.
dt r
The solution of this first-order linear differential equation with constant coefficients, which satisfies the
initial condition u(0) = u0, is
2h
u(t) = u0 exp t−
.
cρr

Section 1.3
N

1.3.2 ∂u/∂x is continuous if K0(x0−) = K0(x0+), that is, if the conductivity is continuous.

Section 1.4
U

1.4.1 (a) Equilibrium satisfies (1.4.14), d2u/dx2 = 0, whose general solution is (1.4.17), u = c1 + c2x. The
boundary condition u(0) = 0 implies c1 = 0 and u(L) = T implies c2 = T/L so that u = Tx/L.
1.4.1 (d) Equilibrium satisfies (1.4.14), d2u/dx2 = 0, whose general solution (1.4.17), u = c1 + c2x. From
R

the boundary conditions, u(0) = T yields T = c1 and du/dx(L) = α yields α = c2. Thus u = T + αx.
1.4.1 (f) In equilibrium, (1.2.9) becomes d2u/dx2 = −Q/K0 = −x2 , whose general solution (by integrating
twice) is u = −x4/12 + c1 + c2x. The boundary condition u(0) = T yields c1 = T , while du/dx(L) = 0
yields c2 = L3/3. Thus u = −x4/12 + L3x/3 + T .
SE

1.4.1 (h) Equilibrium satisfies d2u/dx2 = 0. One integration yields du/dx = c2, the second integration
yields the general solution u = c1 + c2x.
x = 0 : c2 — (c1 − T ) = 0
x = L : c2 = α and thus c1 = T + α.
Therefore, u = (T + α) + αx = T + α(x + 1).
D

1.4.7 (a) For equilibrium:
d2 u x2 du
=
dx2 −1 implies u = − + c1x + c2 and = −x + c1.
O

2 dx
From the boundary conditions (0) = 1 and (L) = β, c1 = 1 and −L + c1 = β which is consistent
du du
dx dx 2
only if β + L = 1. If β = 1 —L, there is an equilibrium solution (u =− 2 x + x + c2). If β /= 1 − L,
there isn’t an equilibrium solution. The difficulty is caused by the heat flow being specified at both
C

ends and a source specified inside. An equilibrium will exist only if these three are in balance. This
balance can be mathematically verified from conservation of energy:
∫ ∫L
d L du du
cρu dx = − (0) + (L) + Q0 dx = −1 + β + L.
S
dt 0 dx dx 0

If β + L = 1, then the total thermal energy is constant and the initial energy = the final energy:
∫L ∫L
x2
f (x) dx = — + x + c2 dx, which determines c2.
0 0 2

If β + L = 1, then the total thermal energy is always changing in time and an equilibrium is never
reached.




uytrewq

, gfdsfd

Section 1.5
1.5.9 (a) In equilibrium, (1.5.14) using (1.5.19) becomes drd rdu dr
= 0. Integrating once yields rdu/dr = c1
and integrating a second time (after dividing by r) yields u = c1 ln r + c2. An alternate general solution
is u = c1 ln(r/r1) + c3. The boundary condition u(r1) = T1 yields c3 = T1, while u(r2) = T2 yields c1
= (T2 − T1)/ ln(r2/r1). Thus, u = 1 [(T2 − T1) ln r/r1 + T1 ln(r2/r1)].
ln(r2/r ) 1

1.5.11 For equilibrium, the radial flow at r = a, 2πaβ, must equal the radial flow at r = b, 2πb. Thus β = b/a.
1.5.13 From exercise 1.5.12, in equilibriumdrd r2drdu = 0. Integrating once yields r2du/dr = c1 and integrat-
and u(1) = 0 yields 80 = −c1/4 + c2 a2nd 0 = −c1 + c2. Thus c1 = c2 = 320/3 or u = 320 1− 1 .
ing a second time (after dividing by r ) yields u = −c1/r + c2. The boundary conditio3ns u(4)r = 80
N
U
R
SE
D
O
C
S



uytrewq

, gfdsfd

Chapter 2. Method of Separation of Variables
Section 2.3
2.3.1 (a) u(r, t) = φ(r)h(t) yields φdh = kh d
rdφ . Dividing by kφh yields 1 dh
= 1 d
rdφ = −λ or
dt r dr dr kh dt rφ dr dr
dh
dt
= −λkh and 1 d
r dr
r dφdr = −λφ.
2 2 2
= −λ or
φ 1d φ
2.3.1 (c) u(x, y) = φ(x)h(y) yields hd + φd h
= 0. Dividing by φh yields
= − 1 d2h2
dx2 dy2 φ dx2 h dy
d2 φ 2

dx2 = −λφ and d h
dy2 = λh.
4 4
2.3.1 (e) u(x, t) = φ(x)h(t) yields φ(x)dh = kh(t) d φ . Dividing by kφh, yields 1 dh
= 1 d φ
= λ.
dt dx4 kh dt φ dx4
2 2 2 2
2.3.1 (f) u(x, t) = φ(x)h(t) yields φ(x)dt
d h 2 d φ
2 = c h(t) dx2 . Dividing by c φh, yields c2h dt2
2 1 d h
= 1d φ
φ dx2 = −λ.

2.3.2 (b) λ = (nπ/L)2 with L = 1 so that λ = n2π2, n = 1, 2, . . .
N

2.3.2 (d)
(i) If √λ > 0 ,√φ = c cos √λx + c sin √λx. φ(0) = 0 implies c = 0, while dφ (L) = 0 implies
c λ cos λL = 01. Thus = 2+ ( =1 2 ).
√ 2 1 dx
−π/
U
2 λL nπ n , ,...
(ii) If λ = 0, φ = c1 + c2x. φ(0) = 0 implies c1 = 0 and dφ/dx(L) = 0 implies c2 = 0. Therefore λ = 0
is not an eigenvalue. √ √
(iii) If λ < 0, let λ = −s and φ = c cosh sx + csxs.inφh c (0) = 0 implies d φ=/ d0x aLnd ()=0
R
1
√ √
implies c2 s cosh sL = 0. Thus c2 = 0 and hence there are no eigenvalues with λ < 0.
2.3.2 (f) The simpliest method is to let x′ = x − a. Then d2φ/dx′2 + λφ = 0 with φ(0) = 0 and φ(b − a) = 0.
Thus (from p. 46) L = bΣ−a and λ = [nπ/(b − a)]2 , n = 1, 2, . . ..
SE


2.3.3 From (2.3.30), u(x, t) = n=1 B sin
nπx −k(nπ/L) t
e . 2The initial condition yields
n
Σ∞
n=1 n
L
n ∫L
2 cos 3Lπx
= B sin
. ∫From (2.3.35), B =
nπLx
Σ 2L 02 cos 3 π Lx sin nπxL dx.
2.3.4 (a) Total heat energy = L
cρuA dx = cρA ∞ B e−k( nπ )2 t 1−cos nπ , using (2.3.30) where B
0 L
satisfies (2.3.35). n=1 n L nπ n

2.3.4 (b)
D

heat flux to right = −K0∂u/∂x
total heat flow to right = −K 0 A∂ u. /∂x
heat flow out at x = 0 = K0A∂u .
∂x x.=0
∂u .
heat flow out (x = L) = −
O
K ∂x0A
x=L ∫L .L
2.3.4 (c) From conservation of thermal energy, d
u dx = k ∂u = k ∂u (L) − k ∂u (0). Integrating from
dt 0 ∂x .0 ∂x ∂x
t = 0 yields ∫ ∫ L ∫
C
L
u(x, t) dx −
t
∂u (L) − ∂u (0)
u(x, 0) dx = k dx .
0 ∂x
0 ` ˛¸ x ` 0 ˛∂ ¸
x x ` ˛¸
` ˛¸ x initial heat integral of integral of
heat aet tnergy
S
flow in at flow out at
energy
x=L x=L
2u √ √
2.3.8 (a) The general solution of kd = αu (α > 0) is u(x) = a cosh αx + b sinh αx. The boundary
dx2 k k
condition u(0) = 0 yields a = 0, while u(L) = 0 yields b = 0. Thus u = 0.




uytrewq
$17.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
ScoreGuides Chamberlain College Of Nursing
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
1332
Miembro desde
2 año
Número de seguidores
776
Documentos
2290
Última venta
6 días hace
ScoreGuides – Study Smarter, Score Higher

ScoreGuides provides high-quality study guides, test banks, and solutions manuals across a wide range of subjects. Each document is carefully created and structured to help students master key concepts, practice effectively, and excel in exams. Trusted by thousands of learners worldwide — study smarter, score higher!

4.1

120 reseñas

5
70
4
21
3
10
2
8
1
11

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes