100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Knowledge and Data - Slides Summary

Puntuación
-
Vendido
-
Páginas
56
Subido en
03-01-2025
Escrito en
2020/2021

A summary of all the slides for the course Knowledge and Data, BSc AI.

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
3 de enero de 2025
Número de páginas
56
Escrito en
2020/2021
Tipo
Resumen

Temas

Vista previa del contenido

Knowledge and Data - Summary Bachelor Artificial Intelligence Year 2


Module 1: Formal foundations of knowledge graphs

Data, knowledge and information
● Data (raw data) = individual facts that are out of context, have no meaning and are difficult to
understand
● Information = set of data in context with relevance to one or more people at a point in time or for
a period of time
● Knowledge = the factor condition of knowing something with familiarity gained through
experience or association
● Knowledge is information that has been retained with an understanding of the significance of that
information

Knowledge can either be tacit or explicit:
● Tacit (or implicit) knowledge = knowledge that a person retains in their mind
○ intangible, invisible, basic, hidden “underwater” (80%)
● Explicit (or formal) knowledge = knowledge that has been formalized, codified and
stored
○ Tangible, visible, public, can be accessed by third persons, once shared it belongs
to everyone, can be seen “above the water” (20%)

Formal knowledge is necessary to efficiently interpret and reuse data




According to Forbes, data scientists usually spent more time on preparing, linking and cleaning data than
on building the datasets in the first place.




1

,Knowledge and Data - Summary Bachelor Artificial Intelligence Year 2




Knowledge Graphs
● In many cases, the knowledge the data is about should be made more explicit
● More knowledge/semantics:
○ Domain and range
○ Subclasses

Formally representing knowledge graphs
● A language is needed to write down the knowledge graph unambiguously
● Correct “statements” need to be defined precisely in order to interpret them
● What these “statements” are supposed to mean need to be defined
● What can be derived from the graph needs to be defined
→propositional logic

Propositional logic as a formal system
● A declarative sentence or proposition = statement that is true or false
● Three elements:
○ Syntax
○ Semantics
○ Calculus
● Symbols of propositional logic




2

,Knowledge and Data - Summary Bachelor Artificial Intelligence Year 2


● Standard syntax




● Different syntaxes
○ There might be different ways to write down the same formulas
○ Examples:
■ Different symbols for the operators
● (((A | B) & C) -> (-D))
■ Leave out parentheses
● (A | B) & C -> -D
■ Different order
● Prefix
● Prefix syntax = syntax which starts with the operators and then the arguments
○ Inductive definition: a formula is a list starting with the operator and then containing all
the formulas to which the operator applies.
● Truth Value Semantics
○ Formulas of propositional logic are used to express declarative statements which are
either true (T) or false (F)
○ The truth value of a composite formula like Φ ∧ Ψ determined by the truth values of its
components Φ and Ψ.
○ For each connective, this functional behavior is expressed by its truth table.




● For a formula with n variables, 2n lines are in the truth table
● Formulas Φ and Ψ are semantically equivalent, notation Φ ≡ Ψ, if they have identical
columns in their truth tables
● A formula is a tautology if its column in a truth table has T on every line
● A formula is a contradiction if its column in a truth table has F on every line
● Semantic entailment: always if the premises Φ1…., Φn are true, then the conclusion Ψ is
true as well.
○ “Always”: in every line of the corresponding truth table




3

, Knowledge and Data - Summary Bachelor Artificial Intelligence Year 2


Formal systems
● What is a logic?
○ A formal language
○ Syntax: which expressions are legal (well-formed)?
○ Semantics: what legal expressions mean, the meaning of each sentence w.r.t.
interpretation
○ Calculus: how to determine meaning for legal expressions
● A logic of arithmetic: syntax
○ Unambiguous definitions of what sentences are well-formed
■ 2 terms with a comparator between them (=, <, > <=, >=)
■ A term is either a Natural Number, a variable or a complex term
■ A complex term is an operator +, -, *, / applied to two terms
■ Infix notation with parentheses “(term1 operator term2)”
● E.g., X + 2 >= Y and NOT X2 + Y
○ No ambiguity
■ 7+3+5 = 2x - 3 is not well-formed unless there is agreement (convention) that
means (7+3) + 5 = (2*X) - 3

● A logic of arithmetic: semantics
○ Truth is defined in terms of assignment for variables
○ Let V be the set of variables, then Iv: V → N is an assignment, a function that assigns
natural numbers to each variable
○ ! For specific values we say that Iv is a model of a formula F if Iv(F) is true.
○ ! A formula F entails another formula G (F |= G) if for all variable assignments Iv(F) is
true implies that Iv(G) is true. In other words, F entails G if G is true in all models of F.
● A logic of concept hierarchies: syntax
○ A concept is “an abstraction or generalization from experience or the result of a
transformation of existing ideas”.
○ Syntax
■ Let C be a fine set of concept names.
■ If c1 and c2 in C, then (c1 subclassOfc2) is an axiom in LCH
■ An LCH knowledge base is a set of LCH axioms.
● Examples: (Lions subclassOf Mammals) and (Capital subclassOf City) If
(Lions subclassOf Mammals) and (Mammals subclassOf Animals), we
want to derive that (Lions subclassOf Animals)
● A logic of concept hierarchies: semantics
○ Let U be a universe, a set of arbitrary objects. Ic: C → P(U) is a function that assigns
subsets of the domain to concept names.
○ An axiom (c1 subclassOfc2) is true w.r.t. an assignment if Ic (c1) ⊆Ic(c2). Ic is then called
a model for the axiom.
○ An assignment is a model of a knowledge base if it is a model of all its axioms
○ An axiom (c1 subclassOfc2) is entailed by a knowledge base KB if it is true in all models
of KB.


4
$15.75
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
tararoopram Vrije Universiteit Amsterdam
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
26
Miembro desde
3 año
Número de seguidores
2
Documentos
38
Última venta
2 meses hace

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes