100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Machine Learning for the Quantified Self - Summary Slides

Puntuación
-
Vendido
-
Páginas
48
Subido en
30-12-2024
Escrito en
2022/2023

A summary of all the slides for the course Machine Learning for the Quantified Self, MSc AI.

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
30 de diciembre de 2024
Número de páginas
48
Escrito en
2022/2023
Tipo
Resumen

Temas

Vista previa del contenido

Machine Learning for the Quantified Self - Slides Summary


Lecture 1: Introduction and Basics of Sensory Data
Quantified Self definition
●​ Term first coined by Gary Wolf and Kevin Kelly in Wired Magazine
●​ Swan (2013): “The quantified self is any individual engaged in the self-tracking of any
kind of biological, physical, behavioral, or environmental information. There is a proactive
stance toward obtaining information and acting on it.”
●​ We: “The quantified self is any individual engaged in the self-tracking of any kind of
biological, physical, behavioral, or environmental information. The self-tracking is driven
by a certain goal of the individual with a desire to act upon the collected information.”

Quantified Self: measurements
●​ Augemberg (2012):




Quantified Self: why?
●​ Choe, 2014:
○​ Interview with 52 quantified selves
○​ Three categories:
■​ Improved health (cure or manage a condition, execute a treatment plan,
achieve a goal)
■​ Improve other aspects of life (maximize work performance, be mindful)
■​ Find new life experiences (have fun, learn new things)
●​ Gimpel, 2013:
○​ Identify “Five-Factor Framework of Self-Tracking Motivations”:
■​ Self-healing (become healthy)
■​ Self-discipline (rewarding aspects of it)
■​ Self-design (control and optimize “yourself”)
■​ Self-association (associated with movement)
■​ Self-entertainment (entertainment value)




1

,Machine Learning for the Quantified Self - Slides Summary


Quantified Self: Arnold and Bruce
●​ Use two running examples
○​ Arnold:
■​ Loves sports
■​ Wants to participate in IRONMAN
■​ Gadget freak
■​ Smart phone/watch/...
■​ Electronic scale
■​ Chest strap
■​ …...
○​ Bruce:
■​ Diabetic
■​ Susceptible for depression
■​ Smart watch
■​ Device to measure blood glucose level
■​ ......

Moving on the machine learning
●​ Machine learning: “Machine learning is to automatically identify patterns from data”
●​ What could we learn for Arnold and Bruce?
○​ Arnold:
■​ Advising the training to make most progress towards a certain goal based
on past outcomes of training.
■​ Forecasting when a certain running distance will be feasible based on the
progress made so far and the training schedule.
○​ Bruce:
■​ Predict the next blood glucose level based on past measurements and
activity levels.
■​ Determine when and how to intervene when the mood is going down to
avoid a spell of depression.
■​ Finding clusters of locations that appear to elevate one’s mood.

Why is the Quantified Self so different?
●​ Sensory noise
●​ Missing measurements
●​ Temporal data
●​ Interaction with a user
●​ Learn over multiple datasets




2

,Machine Learning for the Quantified Self - Slides Summary


Basic Terminology
●​ A measurement is one value for an attribute recorded at a specific time point.




●​ A time series is a series of measurements in temporal order.




●​ Machine learning terminology is assumed to be known, for your convenience:
○​ Supervised learning is the machine learning task of inferring a function from a
set of labeled training data
○​ In unsupervised learning, there is no target measure (or label), and the goal is
to describe the associations and patterns among the attributes
○​ Reinforcement learning tries to find optimal actions in a given situation so as to
maximize a numerical reward that does not immediately come with the action but
later in time

Mathematical notation




3

, Machine Learning for the Quantified Self - Slides Summary


Overview of the course




Dataset
●​ During the course we will use a running example provided by CrowdSignals.io
●​ People share their mobile sensor data (smart phone and smart watch) and get paid for
annotating their data with activities




Mobile phone measurements (examples)
●​ Accelerometer
○​ Measures the changes in forces upon the phone in the x-y-z plane
●​ Gyroscope
○​ Orientation of the phone compared to the earth’s surface
●​ Magnetometer
○​ Measures x-y-z orientation compared to the earth’s magnetic field




4
$12.62
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
tararoopram Vrije Universiteit Amsterdam
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
26
Miembro desde
3 año
Número de seguidores
2
Documentos
38
Última venta
2 meses hace

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes