100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Knowledge Representation - Summary Slides

Puntuación
-
Vendido
-
Páginas
84
Subido en
30-12-2024
Escrito en
2022/2023

Summary of all the slides for the course Knowledge Representation, MSc AI.

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
30 de diciembre de 2024
Número de páginas
84
Escrito en
2022/2023
Tipo
Resumen

Temas

Vista previa del contenido

Lecture 1: Introduction to KR, the Course and "Logic Engineering”
Definition of intelligence”
● carry out complex reasoning (solve physics problems, prove theorems)
● draw plausible inferences (diagnose cars, solve a murder mystery)
● use natural language (read stories and answer questions about them, carry out
extended conversation)
● solving novel complex problems (generating plans, designing artifacts)
● social activities that require a theory of mind
● we do not (only) mean: recognize familiar objects, execute motor skills, or navigate
around space; abilities we share with dogs and cats (and fish)

But isn’t modern AI all about Machine Learning ?
● Two main lines of development in AI
○ symbolic representations
○ statistical representation
● There have been alternating cycles of one dominating over the other in different decades
of the history of AI.

Statistical vs. symbolic AI: very different types of applications
● statistical:
○ pattern recognition (images, sound, shapes)
○ motor skills (robots)
○ speech generation (sound)
○ search engines
● symbolic:
○ planning (autonomous space missions)
○ reasoning (diagnosis, design, decision support)
○ language generation (conversations)
○ search engines

Human intelligence = thinking fast & thinking slow Stengths and weaknesses




● Scaleable:
○ Symbolic→worse with more data
○ Connectionist→worse with less data




1

,Symbolic knowledge is (not) a theory of everything!




The goal of logic in KR
● To state statements which are known to be true (the “knowledge base”)
● Some statements that describe the current state of the world (the “premises”)
● To state statements for which we want to check if they are true (the “conclusions”)
● To see if the conclusions can be derived from the knowledge base + the premises
through logical reasoning
● A variety of related tasks

The ingredients of a logic in KR
● How to formulate the statements (Syntax)
● Assign meaning to the statements (Semantics)
● Assign what can be derived (Calculus)
○ And all of this differs from application domain to application domain and even application
to application.

Logic Engineering
● Previously, you might have learned that Logics exist, how they are defined, what their
theoretical properties are, etc.
● Knowledge Representation is
○ The field of using the right logic for the right AI task
○ Evaluating logics w.r.t. a task or in general
■ Analytically (e.g. soundess, completeness, decidability, complexity, etc)
■ Empirically (practical complexity, practical completeness)
○ Adapt existing logics for a task (we do that in the course)
○ Develop new logics if needed

Logic Engineering: A (cooking) receipe
1. How to represent a real world problem with a formal system/logic?
2. Which formal system/logic is suitable?
3. Which reasoning task gives us a solution to our problem?
4. What syntax to use?
5. Which algorithm calculates the intended semantics?
● Is it good, and how long does it take?




2

,A toy example: politics in the news
● How to measure success of a political party in the news?
● Are two campaigns comparable? Do they have the same political impact?
● Assumption: Negative news has a higher impact! I need to be in the news twice to
compensate for one bit of negative news.

KR in a nutshell: (syntax, semantics, calculus)




KR in a nutshell 2 (Theory about Logics)




Problem solving by SAT solving → Checking for (in)consistency can be used to
solve problems:
● Many problems can be formulated as a set of constraints on the solution. The
constraints for Sudoku, e.g., can be stated as Propositional Logic constraints.
● Finding a solution
○ is asking if the set of constraints is satisfiable
○ is finding a satisfying truth assignment
● Thus: Solving the problem = finding satisfying truth assignment (that satisfies all
the constraints




3

, Testcase 1: Sudoku, PL and DPLL




1) Formulate the problem as Constraints:
● all squares must have exactly one number from 1-9
● no number can appear twice in a row, column or square

Propositional Logic for Sudokus
● Truth assignments (propositions) are sufficient: If 136 is true, there is value 1 in cell x=3,
y=6. If it is false, this is not the case.
● At least one number in each square:
○ “position 11 is a 1 or a 2 or 3 or a 4” ....
● Maximally one number true in each square
○ “if 111 then NOT 211 AND NOT 311... ” ....
● PL is not the only logic to represent Sudokus, but it is simple, and fast.

Finding Sudoku solutions with PL
● Remember: If 136 is true, there is value 1 in cell x=3, y=6. All we have to do is to look for
those propositions that are true w.r.t the constraints of the game, and the givens. These
are called the models.
● Searching for a solution to a sudoku will thus become a search for models.
● We will look at efficient methods to find models (SAT solving using Davis Putnam
Algorithms).

Logic Engineering for Sudokus=
1. How to represent a real world problem with a formal system/logic?
● Constraint satisfaction
2. Which formal system/logic is suitable?
● Propositional logic
3. Which reasoning task gives us a solution to our problem?
● SAT solving
4. What syntax to use?
● DMAC (or whatever)
5. Which algorithm calculates the intended semantics?
● Davis Putnam (DPLL)
● Is it good, and how long does it take?




4
$18.54
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
tararoopram Vrije Universiteit Amsterdam
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
26
Miembro desde
3 año
Número de seguidores
2
Documentos
38
Última venta
1 mes hace

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes