100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Samenvatting Leren Deeltentamen 2

Puntuación
-
Vendido
2
Páginas
10
Subido en
18-04-2020
Escrito en
2016/2017

Dit is een samenvatting van het tweede deeltentamen van het vak Leren van de Universiteit van Amsterdam. De samenvatting is op volgorde van de colleges.

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
18 de abril de 2020
Número de páginas
10
Escrito en
2016/2017
Tipo
Resumen

Temas

Vista previa del contenido

Leren Samenvatting 2
Decision Trees
Decision tree representation:
 Each internal node tests an attribute
 Each branch corresponds to an attribute value
 Each leaf node assigns a classification

Top-Down Induction of Decision trees, main loop:
1. A  the “best” decision attribute for the next node
2. Assign A as decision attribute for a node
3. For each value of A, create a new descendant of the node
4. Sort training examples to leaf nodes
5. If the training examples are perfectly classified, then STOP, else iterate over new leaf
nodes

Entropy
Entropy(S) is the expected number of bits needed to encode a class (+ or -) of a randomly
drawn member of S (under the optimal, shortest-length code). Entropy is the degree of
uncertainty. Binary variance = p(1-p)

, Information Gain
Gain(S,A) is the expected reduction in entropy due to sorting on A.




The information gain is higher for the classifier Humidity, so that is the best classifier.

ID3 Algorithm
There is noise in the data, so we need to make sure that that isn’t used in the model, because
it couldn’t generalize if that were the case.
 Preference for short trees, and for those trees with high information gain attributes
near the root.
 Bias is a preference for some hypotheses, rather than a restriction of hypothesis space
H.
 Occam’s razor: prefer the shortest hypothesis that fits the data:
o Arguments in favor:
 Fewer short hypotheses, than long hypotheses
 A short hypothesis that fits data is unlikely to be a coincidence
 A long hypothesis that fits data might be a coincidence
o Arguments opposed:
 There are many ways to define small sets of hypotheses
 E.g. all trees with a prime number of nodes that use attributes
beginning “Z”
$6.01
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
kimgouweleeuw Universiteit Twente
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
86
Miembro desde
5 año
Número de seguidores
59
Documentos
34
Última venta
11 meses hace

3.7

7 reseñas

5
1
4
3
3
3
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes