100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Samenvatting Descriptive and Inferential Statistics

Puntuación
-
Vendido
1
Páginas
38
Subido en
15-12-2024
Escrito en
2024/2025

Samenvatting van alle powerpoints en lessen. Gemaakt voor het schakelprogramma van de master Psychologie voor het vak Descriptive and Inferential Statistics voor de examenperiode van januari 2025. Zie de tags voor de verschillende onderwerpen. Het document heeft 38 bladzijdes en is gemaakt in mijn gebruikelijke sjabloon (gebruik van kleur en meestal volzinnen, maar een duidelijke structuur). Vergeet bij dit vak uiteraard niet de oefeningen te maken. Let op! Deze samenvatting is in het Engels (net als het vak).

Mostrar más Leer menos
Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
15 de diciembre de 2024
Archivo actualizado en
23 de diciembre de 2024
Número de páginas
38
Escrito en
2024/2025
Tipo
Resumen

Temas

Vista previa del contenido

DIS – januari 2025 1




VARIABLES
= the values we want to measure, e.g. time in seconds, score on a test, gender
- Random variables are variables whose values are unknown and are realizations of a random process

INDEPENDENT VS DEPENDENT VARIABLES
Independent variables Dependent variables
= variable that is not dependent on any other = variable that depends on other factors, the output,
variable, the input, the predictor, the explanation the criteria, the response
- Commonly represented as X1, …, Xj, …, Xk - Commonly represented as Y1, …, Yj, …, Yk
- E.g. the amount of time spent studying - E.g. the exam result

DISCRETE VS CONTINUOUS VARIABLES
Discrete variables Continuous variables
= a variable that only assumes a limited number of = numeric variable that has an infinite number of
values possibilities between two values
- E.g. someone speaks 3 languages, yes/no - E.g. someone looked at a picture for 1,3828 sec
- A discrete variable that - A variable is considered continuous when
• Only assumes two values is a dichotomous • The variable takes on a wide range of values
variable • The variable is a manifestation of an
• Only assumes three values is a underlying continuous variable
trichotomous variable
• Assumes three or more values is a
polytomous variable

QUALITATIVE VS QUANTITATIVE VARIABLES
Qualitative variables Quantitative variables
= numbers only refer to equalities and inequalities = numbers are assigned so that differences between
between the research elements (regarding the numbers correspond with distances between
measured characteristics) research elements (regarding the measured
 The number is only a name or label characteristics)
 Calculating is not meaningful  Number is a real number
 Calculating is meaningful
- Nominal variable, e.g. Dutch (1), English (2)
- Ordinal variable, e.g. not satisfied (1) → very - Interval variable, e.g. temperature in °C, Likert-
satisfied (5) scale in numbers
• ! the numbers must be compared by - Ratio variable, e.g. temperature in °K, time
size/order but are not meaningful to
calculate with

There is a hierarchy within the different types of variables:
- While all quantitative variables can be ordinal variables
(seeing as they are numbers and can be ordened), not all
ordinal variables are quantitative variables
- Ordinal variables can be thought of as qualitative variables
where order matters but numerical measurement or
distance between categories doesn’t really matter

,DIS – januari 2025 2



DESCRIBING 1 VARIABLE

TABLES
- Variables are represented by capital letters in
italics in the columns, e.g. X4
- Research elements are located in the rows and
are represented with a Xij formula, with i
referring to the research element and j to the
variable, e.g. X14 = 3




FREQUENCY TABLES
The (absolute) frequency distribution of X is denoted as f(X), e.g. f(X=77) = 3 because the score 77 occurs 3
times

Cumulative frequency of a specific score on X is the total number of scores lower than or equal to that specific
score and its distribution is denoted as F(X), e.g. F(X=77) = 14
- This is not meaningful for qualitative data as the categories are not ordered

Relative frequencies or proportions of scores on X are the frequencies divided by the number of observations
and its distribution is denoted as p(X), e.g. p(X=77) = 3/30 = 0.1

Relative cumulative frequencies or cumulative proportions of a specific score on X equals the cumulative
frequency divided by the total number of observations and its distribution is denoted as P(X), e.g. P(X=77) =
14/30 = 0.47




STEM-AND-LEAF PLOTS
- Read scores by stem.leaf*101, e.g. 8.4*101 = 84
- When looking for a certain percentile and the n is even,
take then average of the two scores, e.g. P50 of n = 30 is
the 15th score, so (78+78)/2 = 78
- When looking for a percentile and matching score is not
in there (e.g. P25 when n = 10), look at the score above

,DIS – januari 2025 3


KEY STATISTICS

PERCENTILES
= score on X under which at least (so lower or equal) a specific % of scores is situated, e.g. 10th percentile
corresponds to score 8 so at least 10% of scores ≤ 8 → P10 = 8
- To calculate, simply find the corresponding score to the % given in the relative cumulative frequency table
• Is the % not literally in the table? Find the smallest higher percentile and take that score
• Is the % literally in the table and n is an even number? Take the median between that one and the one
above
- Special percentiles:
• Quartiles (in 4), with Q1 = P25, Q2 = P50 and Q3 = P75
• Deciles (in 10), with D1 = Pc10, D2 = P20, …
 These are all special forms of quantiles or fractiles: a score under which a specific proportion of scores is
situated

Example with Stem-and-leaf plot




CENTER

MODE
= score or category with highest frequency, e.g. 2, 3, 3, 4, 6 → mode = 3
- Can be used for both quantitative and qualitative variables
- Uniqueness?
• Unimodal distribution: mode is uniquely defined
• Bimodal or multimodal distribution: two (or more) scores or categories have the maximum frequency,
e.g. 2, 3, 3, 4, 4, 6 → bimodal: mode = 3 and 4

MEDIAN
= the middle value, so (at least) half of the scores are above it and (at least) half are below it
= Q2 = P50
- Calculate by ordering all observed scores, then taking the middle score or averaging the two middle scores

THE (ARITHMETIC) AVERAGE
1 1
𝑋̅ = 𝑛 ∑𝑛𝑖=1 𝑋𝑖 with ∑𝑛𝑖=1 𝑋𝑖 as the sum of all observed values and 𝑛 as this sum divided by the number of
observed values, e.g. 2, 3, 3, 4, 4, 5 → 𝑋̅ = (2+3+3+4+4+5)/6 = 21/6 = 3.5

, DIS – januari 2025 4


Different formulas for frequency table with k scores with examples:
1
- Using absolute frequencies: 𝑋̅ = 𝑛 ∑𝑘𝑖=1 𝑋𝑖 × 𝑓𝑖 , waarbij ∑𝑘𝑖=1 𝑓𝑖 =
𝑛
e.g. 2, 3, 3, 4, 4, 5 → 𝑋̅ = (2+3x2+4x2+5)/6 = 21/6 = 3.5
- Using relative frequencies: 𝑋̅ = ∑𝑘𝑖=1 𝑋𝑖 × 𝑝𝑖 , waarbij ∑𝑘𝑖=1 𝑝𝑖 = 1
e.g. = 2*.17 + 3*.33 + 4*.33 + 5*.17 = 3.5

SPREAD
If a distribution needs to be described by a single number, one usually chooses a measure of central tendency
(mean, median …). However, two distributions can have the same mean/median yet look completely different!

RANGE
= difference between max and min score
- 𝐵 = 𝑋[𝑚𝑎𝑥] − 𝑋[𝑚𝑖𝑛]
- This is extremely sensitive to outliers!

INTERQUARTILE RANGE
= difference between third and first quartile
- 𝐼𝑄𝑅 = 𝑄3 − 𝑄1
- This is a more robust measure of spread for quantitative variables

VARIANCE
= average quadratic deviation from the arithmetic average
1
- 𝑆𝑋2 = 𝑛 ∑𝑛𝑖=1(𝑋𝑖 − 𝑋̅ )2
- Can never be negative!

Calculate by
1) Sum to n
2) Calculate 𝑋̅
3) Calculate the deviations (𝑋 − 𝑋̅)
4) Square the deviations
5) Sum these squares
6) Divide by n



STANDARD DEVIATION
= corrects the “squaredness” from the variance to ensure it is expressed in the original unit of measurement
- 𝑆𝑋 = √𝑆𝑋2
- Can never be negative!

LINEAR TRANSFORMATIONS
VARIABLE X VARIABLE X’
𝑋 𝑋 ′ = 𝑎 + 𝑏𝑋
𝑆𝑋2 2
𝑆𝑋′ = 𝑏 2 𝑆𝑋2
𝑆𝑋 𝑆𝑋′ = |𝑏|𝑆𝑋

STANDARDIZING AND Z-SCORES
= transforming a variable such that the average becomes 0 and the standard deviation becomes 1
- Scores on standardized variables are called standard scores or z-scores, which indicate how many standard
deviations you score above or below the average
𝑋𝑖 −𝑋̅
- 𝑧𝑖 = 𝑆𝑋
$8.96
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Mellowerillish Katholieke Universiteit Leuven
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
156
Miembro desde
7 año
Número de seguidores
56
Documentos
40
Última venta
1 semana hace

Ik bied samenvattingen aan van mijn vorige opleidingen (Kleuteronderwijs aan de UCLL in Heverlee, en verkort traject Toegepaste Psychologie aan de Thomas More in Antwerpen) en van mijn huidige opleiding (schakel/master Psychologie aan de KU Leuven). Hou er rekening mee dat leerstof kan variëren met de jaren en lectoren; mogelijks komen oudere samenvattingen niet helemaal meer overeen met jouw leerstof. Kijk goed de tags na als het gaat om een ouder bestand. Aarzel niet om me een berichtje te sturen met vragen, feedback of opmerkingen!

Lee mas Leer menos
4.4

12 reseñas

5
6
4
5
3
1
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes