100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Hull: Options, Futures, and Other Derivatives Summary and Cheat Sheet

Puntuación
-
Vendido
-
Páginas
7
Subido en
09-12-2024
Escrito en
2024/2025

A summary of 'Options, Futures, and Other Derivatives summary' by John C. Hull with focus on the UoL LSE Derivatives and Risk Management syllabus. A handy cheat sheet is included at the end. Save yourself the time of having to sift through the textbook- It is done very concisely here in this document with example questions and answers for each topic. Contents include: Financial Derivatives Overview FTAP Binomial Tree Model Black-Scholes Formula The Greeks in Risk Management Forwards and Futures Pricing Interest Rate Derivatives Pricing and Hedging Swaptions Exotic Options Yield Curves Convenient Cheat Sheet

Mostrar más Leer menos
Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Estudio
Desconocido
Grado

Información del documento

¿Un libro?
No
¿Qué capítulos están resumidos?
All chapters necessary for the fn3206 module (see description for topics)
Subido en
9 de diciembre de 2024
Número de páginas
7
Escrito en
2024/2025
Tipo
Resumen

Temas

Vista previa del contenido

Options, Futures, and Other Derivatives summary
3rd Party summary of John C. Hull’s textbook


Financial Derivatives Overview
Key Concepts:

• Derivatives are financial instruments whose value depends on an underlying asset (e.g., stock, bond, com-
modity).
• They are used for hedging, speculation, and arbitrage.
• Types of derivatives: forwards, futures, options, and swaps.
• Equity derivatives (like call/put options) and interest rate derivatives (like swaps) are key areas in your
course.
• Arbitrage-free pricing, replication, and risk-neutral pricing are foundational concepts in derivative
pricing.

Example Question: - What is the payoff of a forward contract on a stock with a forward price of
$50?
Answer: The payoff of the forward contract at maturity is:

• Long position payoff: 𝑆𝑇 − 50 (where 𝑆𝑇 is the spot price at maturity).
• Short position payoff: 50 − 𝑆𝑇 .


Fundamental Theorem of Asset Pricing (FTAP)
Key Concepts: - The Fundamental Theorem of Asset Pricing (FTAP) states that in a no-arbitrage
market, there exists a risk-neutral measure under which all securities are priced.

• It links no arbitrage to the existence of a risk-neutral world where the discounted expected value of the
future cash flows is equal to the current price.
• Replication means creating a portfolio of the underlying asset and a risk-free bond that replicates the payoffs
of the derivative.

Example Question:
Given a call option with a strike price of $50, a stock price of $52, a risk-free rate of 5%, and a
1-year maturity, show how the absence of arbitrage can lead to the existence of a risk-neutral pricing
measure.
Answer:
Using the FTAP, the price of a derivative is the discounted expected payoff under the risk-neutral probability
measure.
For a call option with strike 𝐾, the price 𝐶0 is:

𝐶0 = 𝑒−𝑟𝑇 𝔼𝑄 [max(𝑆𝑇 − 𝐾, 0)]


1

, Binomial Tree Model
Key Concepts: - The binomial tree model is a discrete-time model used for option pricing. It approximates
the underlying asset’s price movements over discrete intervals.

• The model assumes that at each step, the asset price either up or down by a fixed factor.
• The risk-neutral probabilities are used to calculate the option’s price by working backward from expiration.

Formula: The price of a derivative at time 𝑡 = 0 is given by:


𝐶0 = exp(−𝑟 ⋅ Δ𝑡) ⋅ (𝑞 ⋅ 𝐶𝑢 + (1 − 𝑞) ⋅ 𝐶𝑑 )

where:

• 𝐶𝑢 and 𝐶𝑑 are the option prices at the up and down nodes,

• 𝑞 is the risk-neutral probability,
• 𝑟 is the risk-free rate
• Δ𝑡 is the time step.

Example Question:
A stock price is $50. The stock can either go up by 10% or down by 10% over one period. The risk-free rate is 5%.
What is the value of a European call option with a strike price of $52 using a one-period binomial tree?
Answer:
Up move: 𝑆𝑢 = 50 × 1.10 = 55
Down move: 𝑆𝑑 = 50 × 0.90 = 45
Option payoffs:


𝐶𝑢 = max(55 − 52, 0) = 3


𝐶𝑑 = max(45 − 52, 0) = 0

Risk-neutral probability:

𝑒0.05 − 0.90
𝑞= = 0.75
1.10 − 0.90

Option price:


𝐶0 = 𝑒−0.05 × [0.75 × 3 + 0.25 × 0] = 𝑒−0.05 × 2.25 ≈ 2.14


Black-Scholes Formula
Key Concepts: - The Black-Scholes model is a continuous-time model used for pricing European options. It
assumes constant volatility, no dividends, and a lognormal distribution of asset prices.

• The model uses stochastic calculus and provides a closed-form solution for European options.



2
$3.66
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
FinEconGraft

Conoce al vendedor

Seller avatar
FinEconGraft London School of Economics
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
1 año
Número de seguidores
0
Documentos
7
Última venta
-
Economics and Finance UoL Worldwide

Notes on subjects pertaining to BSc Economics and Finance. Please contact me for other resources you might need- such as notes for Principles of Corporate Finance, Microeconomics, Macroeconomics and more material on Elements of Econometrics-- These notes are not in a format which can be uploaded here. I am passionate about these subjects so please also reach out to me if you do not understand something in the notes- I am happy to explain them at no additional cost.

Lee mas Leer menos
0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes