100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

ECE 2026 Digital Signal Processing Exam Questions and Answers 100% Solved

Puntuación
-
Vendido
-
Páginas
18
Grado
A+
Subido en
08-12-2024
Escrito en
2024/2025

ECE 2026 Digital Signal Processing Exam Questions and Answers 100% Solved DSP - Digital Signal Processing ECE 2026 - The biggest weed out class for electrical and computer engineers at Georgia Institute of Technology. Sinusoidal Signals - a mathematical curve that describes a smooth repetitive oscillation. It is named after the function sine, of which it is the graph. It occurs often in pure and applied mathematics, as well as physics, engineering, signal processing and many other fields. Its most basic form as a function of time (t) is: y(t) = A* sin(2π * ft + α ) Amplitude, Phase, and Frequency - Amplitude - the maximum extent of a vibration or oscillation, measured from the position of equilibrium

Mostrar más Leer menos
Institución
Digital Signal Processing
Grado
Digital Signal Processing










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Digital Signal Processing
Grado
Digital Signal Processing

Información del documento

Subido en
8 de diciembre de 2024
Número de páginas
18
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

ECE 2026 Digital Signal Processing

Exam Questions and Answers 100%

Solved


DSP - ✔✔Digital Signal Processing

ECE 2026 - ✔✔The biggest weed out class for electrical and computer

engineers at Georgia Institute of Technology.

Sinusoidal Signals - ✔✔a mathematical curve that describes a smooth

repetitive oscillation. It is named after the function sine, of which it is the

graph. It occurs often in pure and applied mathematics, as well as physics,

engineering, signal processing and many other fields. Its most basic form

as a function of time (t) is:



y(t) = A* sin(2\π * ft + α )

Amplitude, Phase, and Frequency - ✔✔Amplitude - the maximum extent of

a vibration or oscillation, measured from the position of equilibrium.




1
©JOSHCLAY 2024/2025. YEAR PUBLISHED 2024.

,Phase - One is the initial angle of a sinusoidal function at its origin and is

sometimes called phase offset or phase difference. Another usage is the

fraction of the wave cycle that has elapsed relative to the origin.



Frequency - frequency is defined as a number of cycles per unit time. This

unit of time often is called the Period(T). So F = 1/T.

Complex Exponential Representation (Phasors) - ✔✔In physics and

engineering, a phasor (a portmanteau of phase vector[1][2]), is a complex

number representing a sinusoidal function whose amplitude (A), angular

frequency (ω), and initial phase (θ) are time-invariant. It is related to a more

general concept called analytic representation,[3] which decomposes a

sinusoid into the product of a complex constant and a factor that

encapsulates the frequency and time dependence. The complex constant,

which encapsulates amplitude and phase dependence, is known as

phasor, complex amplitude, and (in older texts) sinor, or even complexor.



So the phasor in a sinusoidal function is the non-time-variant real part.

sinusoid = A*cos(wt+θ) = Re{ Ae^i(wt+θ)} =

Re{ Ae^iθ *e^iwt }



2
©JOSHCLAY 2024/2025. YEAR PUBLISHED 2024.

, Ae^iθ is the phasor

e^iwt is the time-variant part of the sinusoid



Refer to Wiki:

https://en.wikipedia.org/wiki/Phasor

Multiplication of a Phasor by a Scalar - ✔✔Multiplication of the phasor

{Ae^iθ} by a complex constant, {Be^iФ}, produces a different phasor. That

means its only effect is to change the amplitude and phase of the

underlying sinusoid.



Re{ (Ae^iθ*Be^iФ) * e^iwt } =

Re{ AB*e^i(θ+Ф) * e^iwt} = ABcos(wt+(θ+Ф))

Differentiation of a Phasor - ✔✔The time derivative or integral of a phasor

produces a different phasor. That means its only effect is to change the

amplitude and phase of the underlying sinusoid.



Re{ d/dt(Ae^iθ *e^iwt)} =

Re{ Ae^iθ * iwe^iwt },

given i=e^iπ/2, =

Re{ Ae^iθ * e^iπ/2* w * e^iwt } =

3
©JOSHCLAY 2024/2025. YEAR PUBLISHED 2024.
$11.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
JOSHCLAY West Governors University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
235
Miembro desde
2 año
Número de seguidores
14
Documentos
17642
Última venta
1 semana hace
JOSHCLAY

JOSHCLAY EXAM HUB, WELCOME ALL, HERE YOU WILL FIND ALL DOCUMENTS & PACKAGE DEAL YOU NEED FOR YOUR SCHOOL WORK OFFERED BY SELLER JOSHCLAY

3.7

49 reseñas

5
21
4
7
3
10
2
5
1
6

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes