100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Solution Manual for Modern Physics with Modern Computational Methods: for Scientists and Engineers 3rd Edition by John Morrison, ISBN: 9780128177907, All 15 Chapters Covered, Verified Latest Edition

Puntuación
-
Vendido
-
Páginas
131
Grado
A+
Subido en
15-11-2024
Escrito en
2024/2025

Solution Manual for Modern Physics with Modern Computational Methods: for Scientists and Engineers 3rd Edition by John Morrison, ISBN: 9780128177907, All 15 Chapters Covered, Verified Latest Edition Solution Manual for Modern Physics with Modern Computational Methods: for Scientists and Engineers 3rd Edition by John Morrison, ISBN: 9780128177907, All 15 Chapters Covered, Verified Latest Edition Test bank and solution manual pdf free download Test bank and solution manual pdf Test bank and solution manual pdf download Test bank and solution manual free download Test Bank solutions Test Bank PDF Test Bank Nursing

Mostrar más Leer menos
Institución
Modern Physics With Modern Computational Methods
Grado
Modern Physics with Modern Computational Methods











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Modern Physics with Modern Computational Methods
Grado
Modern Physics with Modern Computational Methods

Información del documento

Subido en
15 de noviembre de 2024
Número de páginas
131
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

SOLUTION MANUAL MODERN PHYSICS WITH
MODERN COMPUTATIONAL METHODS: FOR SCIENTISTS
AND ENGINEERS 3RD EDITION BY MORRISON CHAPTERS

1- 15

,Table of contents
1. The Wave-Particle Duality

2. The Schrödinger Wave Equation

3. Operators and Waves

4. The Hydrogen Atom

5. Many-Electron Atoms

6. The Emergence of Masers and Lasers

7. Diatomic Molecules

8. Statistical Physics

9. Electronic Structure of Solids

10. Charge Carriers in Semiconductors

11. Semiconductor Lasers

12. The Special Theory of Relativity

13. The Relativistic Wave Equations and General Relativity

14. Particle Physics

15. Nuclear Physics

,1

The Wave-Particle Duality - Solutions




1. The energy of photons in terms of the wavelength of light is
given by Eq. (1.5). Following Example 1.1 and substituting λ
= 200 eV gives:
hc 1240 eV · nm
= = 6.2 eV
Ephoton = λ 200 nm
2. The energy of the beam each second is:
power 100 W
= = 100 J
Etotal = time 1s
The number of photons comes from the total energy divided
by the energy of each photon (see Problem 1). The photon’s
energy must be converted to Joules using the constant 1.602
× 10−19 J/eV , see Example 1.5. The result is:
N =Etotal = 100 J = 1.01 × 1020
photons E
pho
ton 9.93 × 10−19
for the number of photons striking the surface each second.
3.We are given the power of the laser in milliwatts, where 1
mW = 10−3 W . The power may be expressed as: 1 W = 1 J/s.
Following Example 1.1, the energy of a single photon is:
1240 eV · nm
hc = 1.960 eV
Ephoton = 632.8 nm
=
λ
We now convert to SI units (see Example 1.5):
1.960 eV × 1.602 × 10−19 J/eV = 3.14 × 10−19 J
Following the same procedure as Problem 2:
1 × 10−3 J/s 15 photons
Rate of emission = = 3.19 × 10
3.14 × 10−19 J/photon s

, 2

4.The maximum kinetic energy of photoelectrons is found
using Eq. (1.6) and the work functions, W, of the metals are
given in Table 1.1. Following Problem 1, Ephoton = hc/λ = 6.20
eV . For part (a), Na has W = 2.28 eV :
(KE)max = 6.20 eV − 2.28 eV = 3.92 eV
Similarly, for Al metal in part (b), W = 4.08 eV giving (KE)max = 2.12 eV
and for Ag metal in part (c), W = 4.73 eV , giving (KE)max = 1.47 eV .

5.This problem again concerns the photoelectric effect. As in
Problem 4, we use Eq. (1.6):
hc −
(KE)max =

where W is the work function of the material and the term hc/λ
describes the energy of the incoming photons. Solving for the
latter:
hc
= (KE)max + W = 2.3 eV + 0.9 eV = 3.2 eV
λ
Solving Eq. (1.5) for the wavelength:
1240 eV · nm
λ= = 387.5 nm
3.2
eV
6. A potential energy of 0.72 eV is needed to stop the flow of
electrons. Hence, (KE)max of the photoelectrons can be no more
than 0.72 eV. Solving Eq. (1.6) for the work function:
hc 1240 eV · — 0.72 eV = 1.98 eV
W = — (KE)max
λ nm
=
460 nm
7. Reversing the procedure from Problem 6, we start with Eq. (1.6):
hc 1240 eV ·
(KE)max = − W — 1.98 eV = 3.19 eV
= nm
λ
240 nm
Hence, a stopping potential of 3.19 eV prohibits the electrons
from reaching the anode.

8. Just at threshold, the kinetic energy of the electron is
zero. Setting (KE)max = 0 in Eq. (1.6),
hc
W = = 1240 eV · = 3.44 eV
λ0 nm

360 nm
9. A frequency of 1200 THz is equal to 1200 × 1012 Hz. Using Eq. (1.10),
$17.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
Ariikelsey
1.0
(1)

Conoce al vendedor

Seller avatar
Ariikelsey NURSING
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
3
Miembro desde
1 año
Número de seguidores
1
Documentos
1053
Última venta
5 meses hace

1.0

1 reseñas

5
0
4
0
3
0
2
0
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes