100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Integral Calculus Exam Questions and Correct Answers Latest Update 2024 (Already Passed)

Puntuación
-
Vendido
-
Páginas
34
Grado
A+
Subido en
14-11-2024
Escrito en
2024/2025

Integral Calculus Exam Questions and Correct Answers Latest Update 2024 (Already Passed) Find the total length of the curve r = 4(1 - Sinθ) from θ = 90° to θ = 270° and also the total perimeter of the curve. a. 12, 24 b. 15, 30 c. 16, 32 d. 18, 36 - Answers C Find the length of the curve r = 4Sin θ from θ = 0° to θ = 90° and also the total length of curve. a. π ; 2π b. 2π ; 4π c. 3π ; 6π d. 4π ; 8π - Answers B Find the length of the curve r = a (1 - Cosθ) from θ = 0° to θ = π and also the total length of the curve. a. 2a ; 4a b. 3a ; 6a c. 4a ; 8a d. 5a ; 9a - Answers C Find the total length of the curve r = a Cosθ. a. πa b. 2πa c. 1.5πav d. 0.67πa - Answers A Find the length of the curve having a parametric equations of x = a Cos3θ, y = a Sin2θ from θ = 0° to θ = 2π. a. 5a b. 6a c. 7a d. 8a - Answers B Find the centroid of the area bounded by the curve y = 4 - x2, the line x = 1 and the coordinate axes. a. (0.24, 1.57) b. (1.22, 0.46) c. (0.48, 1.85) d. (2.16, 0.53) - Answers C Find the centroid of the area under y = 4 - x2 in the first quadrant. a. (0.75, 1.6) b. (1.6, 0.95) c. (0.74, 1.97) d. (3.16, 2.53) - Answers A Find the centroid of the area in first quadrant bounded by the curve y2 = 4ax and the latus rectum. a. (0.6a, 0.75a) b. (1.23a, 0.95a) c. (0.94a, 2.97a) d. (1.16a, 0.53a) - Answers A A triangular section has coordinates of A(2, 2), B(11, 2), and C(5, 8). Find the coordinates of the centroid of the triangular section. a. (7, 4) b. (6, 4) c. (8, 4) d. (9, 4) - Answers B The following cross section has the following given coordinates. Compute for the centroid of the given cross section. A(2, 2), B(5, 8), C(7, 2), D(2, 0), and E(7, 0). a. (4.6, 3.4) b. (4.8, 2.9) c. (5.2, 3.8) d. (5.3, 4.1) - Answers A Sections ABCD is a quadrilateral having the given coordinates A(2, 3), B(8, 9), C(11, 3), and D(11, 0). Compute for the coordinates of the centroid of the quadrilateral. a. (5.32, 3) b. (6.23, 4) c. (7.33, 4) d. (8.21, 3) - Answers C A cross section consists of a triangle and a semi circle with AC as its diameter. If the coordinates of A(2, 6), B(11, 9), and C(14, 6). Compute for the coordinates of the centroid of the cross section. a. (4.6, 3.4) b. (4.8, 2.9) c. (5.2, 3.8) d. (5.3, 4.1) - Answers A A 5 m x 5 cm is cut from a corner of 20 cm x 30 cm cardboard. Find the centroid from the longest side. a. 10.99 m b. 11.42 m c. 10.33 m d. 12.42 m - Answers C Locate the centroid of the area bounded by the parabola y2 = 4x, the line y = 4 and the y-axis. a. (0.4, 3) b. (0.6, 3) c. (1.2, 3) d. (1.33, 3) - Answers C Find the centroid of the area bounded by the curve x2 = -(y - 4), the x-axis and the y-axis on the first quadrant. a. (0.25, 1.8) b. (1.25, 1.4) c. (1.75, 1.2) d. (0.75, 1.6) - Answers D Locate the centroid of the area bounded by the curve y2 = -1.5(x - 6), the x-axis and the y-axis on the first quadrant. a. (2.2, 1.38) b. (2.4, 1.13) c. (2.8, 0.63) d. (2.6, 0.88) - Answers B Locate the centroid of the area bounded by the curve 5y2 = 16x and y2 = 8x - 24 on the first quadrant. a. (2.20, 1.51) b. (1.50, 0.25) c. (2.78, 1.39) d. (1.64, 0.26) - Answers A Locate the centroid of the area bounded by the parabolas x2 = 8y and x2 = 16(y - 2) in the first quadrant. a. (3.25, 1.2) b. (2.12, 1.6) c. (2.67, 2.0) d. (2.00, 2.8) - Answers B Given the area in the first quadrant bounded by x2 = 8y, the line y - 2 = 0 and the y-axis. What is the volume generated when revolved about the line y - 2 = 0? a. 53.31 m3 b. 45.87 m3 c. 26.81 m3 d. 33.98 m3 - Answers C Given the area in the first quadrant bounded by x2 = 8y, the line x = 4 and the x-axis. What is the volume generated by revolving this area about the y-axis? a. 78.987 m3 b. 50.265 m3 c. 61.253 m3 d. 82.285 m3 - Answers B Given the area in the first quadrant bounded by x2 = 8y, the line y - 2 = 0 and the y-axis. What is the volume generated when this area is revolved about the x-axis. a. 20.32 m3 b. 34.45 m3 c. 40.21 m3 d. 45.56 m3 - Answers C Find the volume formed by revolving the hyperbola xy = 6 from x = 2 to x = 4 about the x-axis. a. 23.23 m3 b. 25.53 m3 c. 28.27 m3 d. 30.43 m3 - Answers C The region in the first quadrant under the curve y = Sinh x from x = 0 to x = 1 is revolved about the x-axis. Compute the volume of solid generated. a. 1.278 m3 b. 2.123 m3 c. 3.156 m3 d. 1.849 m3 - Answers A A square hole of side 2 cm is chiseled perpendicular to the side of a cylindrical post of radius 2 cm. If the axis of the hole is going to be along the diameter of the circular section of the post, find the volume cutoff. a. 15.3 m3 b. 23.8 m3 c. 43.7 m3 d. 16.4 m3 - Answers A Find the volume common to the cylinders x2 + y2 = 9 and y2 + z2 = 9. a. 241 m3 b. 533 m3 c. 424 m3 d. 144 m3 - Answers D Given is the area in the first quadrant bounded by x2 = 8y, the line, the line x = 4 and the x-axis. What is the volume generated by revolving this area about the y-axis. a. 50.26 m3 b. 52.26 m3 c. 53.26 m3 d. 51.26 m3 - Answers A The area bounded by the curve y2 = 12x and the line x = 3 is revolved about the line x = 3. What is the volume generated? a. 185 b. 187 c. 181 d. 183 - Answers C The area in the second quadrant of the circle x2 + y2 = 36 is revolved about the line y + 10 = 0. What is the volume generated?

Mostrar más Leer menos
Institución
Integral Calculus
Grado
Integral Calculus











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Integral Calculus
Grado
Integral Calculus

Información del documento

Subido en
14 de noviembre de 2024
Número de páginas
34
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Integral Calculus Exam Questions and Correct Answers Latest Update 2024 (Already Passed)

Find the total length of the curve r = 4(1 - Sinθ) from θ = 90° to θ = 270° and also the total perimeter of
the curve.



a. 12, 24

b. 15, 30

c. 16, 32

d. 18, 36 - Answers C

Find the length of the curve r = 4Sin θ from θ = 0° to θ = 90° and also the total length of curve.



a. π ; 2π

b. 2π ; 4π

c. 3π ; 6π

d. 4π ; 8π - Answers B

Find the length of the curve r = a (1 - Cosθ) from θ = 0° to θ = π and also the total length of the curve.



a. 2a ; 4a

b. 3a ; 6a

c. 4a ; 8a

d. 5a ; 9a - Answers C

Find the total length of the curve r = a Cosθ.



a. πa

b. 2πa

c. 1.5πav

d. 0.67πa - Answers A

,Find the length of the curve having a parametric equations of x = a Cos3θ, y = a Sin2θ from θ = 0° to θ =
2π.



a. 5a

b. 6a

c. 7a

d. 8a - Answers B

Find the centroid of the area bounded by the curve y = 4 - x2, the line x = 1 and the coordinate axes.



a. (0.24, 1.57)

b. (1.22, 0.46)

c. (0.48, 1.85)

d. (2.16, 0.53) - Answers C

Find the centroid of the area under y = 4 - x2 in the first quadrant.



a. (0.75, 1.6)

b. (1.6, 0.95)

c. (0.74, 1.97)

d. (3.16, 2.53) - Answers A

Find the centroid of the area in first quadrant bounded by the curve y2 = 4ax and the latus rectum.



a. (0.6a, 0.75a)

b. (1.23a, 0.95a)

c. (0.94a, 2.97a)

d. (1.16a, 0.53a) - Answers A

,A triangular section has coordinates of A(2, 2), B(11, 2), and C(5, 8). Find the coordinates of the centroid
of the triangular section.



a. (7, 4)

b. (6, 4)

c. (8, 4)

d. (9, 4) - Answers B

The following cross section has the following given coordinates. Compute for the centroid of the given
cross section. A(2, 2), B(5, 8), C(7, 2), D(2, 0), and E(7, 0).



a. (4.6, 3.4)

b. (4.8, 2.9)

c. (5.2, 3.8)

d. (5.3, 4.1) - Answers A

Sections ABCD is a quadrilateral having the given coordinates A(2, 3), B(8, 9), C(11, 3), and D(11, 0).
Compute for the coordinates of the centroid of the quadrilateral.



a. (5.32, 3)

b. (6.23, 4)

c. (7.33, 4)

d. (8.21, 3) - Answers C

A cross section consists of a triangle and a semi circle with AC as its diameter. If the coordinates of A(2,
6), B(11, 9), and C(14, 6). Compute for the coordinates of the centroid of the cross section.



a. (4.6, 3.4)

b. (4.8, 2.9)

c. (5.2, 3.8)

, d. (5.3, 4.1) - Answers A

A 5 m x 5 cm is cut from a corner of 20 cm x 30 cm cardboard. Find the centroid from the longest side.



a. 10.99 m

b. 11.42 m

c. 10.33 m

d. 12.42 m - Answers C

Locate the centroid of the area bounded by the parabola y2 = 4x, the line y = 4 and the y-axis.



a. (0.4, 3)

b. (0.6, 3)

c. (1.2, 3)

d. (1.33, 3) - Answers C

Find the centroid of the area bounded by the curve x2 = -(y - 4), the x-axis and the y-axis on the first
quadrant.



a. (0.25, 1.8)

b. (1.25, 1.4)

c. (1.75, 1.2)

d. (0.75, 1.6) - Answers D

Locate the centroid of the area bounded by the curve y2 = -1.5(x - 6), the x-axis and the y-axis on the
first quadrant.



a. (2.2, 1.38)

b. (2.4, 1.13)

c. (2.8, 0.63)
$9.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
TutorJosh Chamberlain College Of Nursing
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
350
Miembro desde
1 año
Número de seguidores
16
Documentos
29226
Última venta
8 horas hace
Tutor Joshua

Here You will find all Documents and Package Deals Offered By Tutor Joshua.

3.6

55 reseñas

5
19
4
14
3
12
2
0
1
10

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes