100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

Power Relations and Circuit Measurements notes

Puntuación
-
Vendido
-
Páginas
19
Subido en
10-11-2024
Escrito en
2012/2013

Transform your understanding of Power Relations and Circuit Measurements with this indispensable set of notes, crafted specifically for electrical and computer engineering students. Dive into key concepts like circuit analysis, Ohm’s Law, Kirchhoff’s Laws, Thevenin’s and Norton’s theorems, and AC/DC circuit dynamics—all presented in an easy-to-follow format that breaks down complex ideas into manageable steps. Packed with clear explanations, illustrative examples, and expert problem-solving strategies, these notes are designed to make your study sessions more productive and engaging. Whether you're aiming for top exam scores, tackling challenging assignments, or seeking to solidify your teaching materials, these documents are your ticket to mastering Power Relations and Circuit Measurements Elevate your learning experience and boost your confidence with these comprehensive and expertly organized notes. Start excelling today—now available on Stuvia!

Mostrar más Leer menos
Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
10 de noviembre de 2024
Número de páginas
19
Escrito en
2012/2013
Tipo
Notas de lectura
Profesor(es)
Desconocido
Contiene
Todas las clases

Temas

Vista previa del contenido

Chapter 7 Power Relations and Circuit Measurements


7.1 Instantaneous and Average Power
Resistor
 If a voltage v = Vmcos(t + ) is i
p
applied to a resistor R (Figure
7.1.1a), the current through the + t
v R
– - i
resistor is i = I m cos (ωt+θ) , where v
Vm (a) (b)
I m= Figure 7.1.1
R , and the instantaneous
power dissipated in the resistor at any time t is:
VmIm
=
2
[ 1+cos 2 ( ωt +θ ) ]
p = vi = VmImcos2(t + ) (7.1.1)
 The instantaneous power varies at twice the supply frequency and is never negative,
since the resistor does not return power to the supply (Figure 7.1.1b).
 Over a cycle, the cosine term averages to zero, so the average power dissipated
over a cycle is:
V m Im Vm Im
P= = =V rms I rms
2 √2 √ 2 (7.1.2)


Inductor
 If a voltage v = Vmcos(t +
i p v
) is applied across an i

inductor L (Figure 7.1.2a), +
v L t
the current through the – -
inductor is i = Imcos(t + 
– 90) = Imsin(t +  ),
Vm (a) Figure 7.1.2 (b)
I m=
where ωL , and the
instantaneous power delivered to the inductor at any time t is:
V m Im
= sin 2 ( ωt +θ )
p = vi = VmImcos(t + )sin(t + ) 2 (7.1.3)
 The average power is zero and that as much power flows in one direction as in the
opposite direction (Figure 7.1.2b).


7-1/19

,Capacitor
 If a voltage v = Vmcos(t +
) is applied across a v
i p
i
capacitor C (Figure
7.1.3a), the current through + t
v C -
the capacitor is i = Imcos(t –
+  + 90) = -Imsin(t + ),

where
I m=ωCV m , and the (a) (b)
Figure 7.1.3
instantaneous power delivered to the capacitor at any time t is:
V m Im
=− sin 2 ( ωt +θ )
p = vi = -VmImcos(t + )sin(t + ) 2 (7.1.4)
 The average power is zero and as much power flows in one direction as in the
opposite direction (Figure 7.1.3b).

Concept When v and i are sinusoidal functions of time of frequency , with
v being a voltage drop in the direction of i, the instantaneous power p = vi is
pulsating at a frequency 2. If v is in phase with i, as in the case of R, p  0
and represents power dissipated. If v and i are in phase quadrature, as in the
case of L and C, p is purely alternating, of zero average, since no power is
dissipated. In this case, when v and i have the same sign, p > 0 and
represents energy being stored in the energy-storage element. When v and i
have opposite signs, p < 0 and represents previously stored energy being
returned to the rest of the circuit.


General Case
 In the general case, the instantaneous power delivered to any given circuit N through
a specified pair of terminals of N is:
p = vi (7.1.5)
where i is the instantaneous current entering the terminals in the direction of the
voltage drop v (Figure 7.1.4a).
 If v = Vmcos(t + v) and i = Imcos(t + i) (Figure 7.1.4b):
p = VmImcos(t + v)cos(t + i) (7.1.6)


 Resolve v into two components: i

+
v N
7-2/19


- v (a)
p VQ
V

, V Q




t
i v I VP
- i
i
v
a component vP in phase with i and a component vQ in phase quadrature with
(c)i.
(b) Figure 7.1.4
 The component of v in phase with i has a phase angle I and a magnitude Vmcos(v -
i), whereas the component in phase quadrature with i has a phase angle (I + 90)
and a magnitude Vmsin(v - i) (Figure 7.1.4c). Thus:
vP = [Vmcos(v - i)]cos(t + i)] (7.1.7)
vQ = Vmsin(v - i)cos(t + i + 90) = –Vmsin(v – i)sin(t + i) (7.1.8)
 Multiplying each of the two components of v by i:
V m Im
= cos ( θv −θi ) [ 1+cos 2 ( ωt +θi ) ]
vPi = VmImcos(v – i)cos2(t + i) 2
= P[1 + cos2(t + i)] (7.1.9)
Vm Im
P= cos ( θv −θi )=V rms I rms cos ( θv −θi )
where, 2 (7.1.10)
and vQi = –VmImsin(v - i)cos(t + i)sin(t + i)
V m Im V m Im
=− sin ( θv −θi ) sin 2 ( ωt +θ i ) = sin ( θ v −θi ) cos [ 2 ( ωt +θi ) + 90∘ ]
2 2
= Qcos[2(t + i) + 90] (7.1.11)
V m Im
Q= sin ( θ v −θi ) =V rms I rms sin (θ v−θ i )
where, 2 (7.1.12)
 P is the real, or average, power. It appears in Equation 7.1.9 both as the average of
vPi, which is the power dissipated in the resistive elements of the circuit, and as the
magnitude of the alternating component of vPi.
 Q is the reactive power and is the power associated with the energy that is
alternately stored and returned to the supply by the inductive and capacitive
elements of the circuit. From Equation 7.1.12, Q is the magnitude of vQi, which is
purely alternating.

 For a resistor,
θv =θi , so Q = 0 and P = V I , in accordance with Equation 7.1.2.
rms rms



For an inductor,
θv −θi =90∘ , so Q = V I and P = 0. For a capacitor,
rms rms


θv −θi =−90∘ , so Q = –V I and P = 0. Thus, Q is positive for an inductive
rms rms

reactance and is negative for a capacitive reactance.
 Whereas the unit of P is the watt (W), the unit of Q is the volt-ampere reactive, VAR).


Example 7.1.1 Real and Reactive Power
Consider a voltage vSRC = 100cos(1000t + 30)
I 30 


7-3/19 +
10030 V j 40 



Figure 7.1.5
$5.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
derrickwesonga

Documento también disponible en un lote

Conoce al vendedor

Seller avatar
derrickwesonga University of South Africa (Unisa)
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
1 año
Número de seguidores
0
Documentos
12
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes