100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

Sinusoidal Steady State notes

Puntuación
-
Vendido
-
Páginas
17
Subido en
10-11-2024
Escrito en
2012/2013

Transform your understanding of Sinusoidal Steady State with this indispensable set of notes, crafted specifically for electrical and computer engineering students. Dive into key concepts like circuit analysis, Ohm’s Law, Kirchhoff’s Laws, Thevenin’s and Norton’s theorems, and AC/DC circuit dynamics—all presented in an easy-to-follow format that breaks down complex ideas into manageable steps. Packed with clear explanations, illustrative examples, and expert problem-solving strategies, these notes are designed to make your study sessions more productive and engaging. Whether you're aiming for top exam scores, tackling challenging assignments, or seeking to solidify your teaching materials, these documents are your ticket to mastering Sinusoidal Steady State Elevate your learning experience and boost your confidence with these comprehensive and expertly organized notes. Start excelling today—now available on Stuvia!

Mostrar más Leer menos
Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
10 de noviembre de 2024
Número de páginas
17
Escrito en
2012/2013
Tipo
Notas de lectura
Profesor(es)
Smr10
Contiene
Todas las clases

Temas

Vista previa del contenido

Chapter 5 Sinusoidal Steady State


5.1 Sinusoidal Function
y
 y=Y m cos (ωt+θ) (5.1.1)
where Ym is the amplitude of a Ym
sinusoidal voltage or current,  is Ymcos( ) y = Ymcos(t +  )
the angular frequency, and  is
the phase angle (Figure 5.1.1). t
 The time interval between
successive repetitions of the – Ym
same value of y is the period T.
T = 2/
The full range of values of the
Figure 5.1.1
function over a period is a cycle.
The frequency f of repetitions of the function is:
1 ω
f= =
T 2π (5.1.2)
where T is in seconds, f is in cycles per second, or hertz (Hz), and  is in rad/s.

Concept An important property of the sinusoidal function is that it is
invariant under linear operations, such as scaling, addition, subtraction,
differentiation, and integration.
 Linear operations may change the amplitude and phase of a sinusoidal function but
they do not change its general shape or its frequency.


5.2 Response to Complex Sinusoidal Excitation
Response of RL Circuit to Sinusoidal Excitation
 Consider a series RL circuit
+ vR –
supplied from a voltage
source vSRC = Vmcos(t + ),
R
+
as in Figure 5.2.1a.
+ R 2   2L2
vSRC L vL
 From KVL: vSRC = vR + vL, – i L
– 
where vR = Ri and vL = Ldi/dt.
R
Substituting for these terms:
(a) Figure 5.2.1 (b)



5-1/17

, di
L + Ri=V m cos ( ωt +θ )
dt (5.2.1)
 This is a linear, first-order differential equation with a forcing function Vmcos(t + )
on the RHS. The complete solution is the sum of two components:
di
L + Ri=0
 A transient component that is the solution to the equation dt , and
which dies out with time. A steady state is assumed to prevail only after the
transient component has become insignificant.
 A steady-state component iSS that satisfies Equation 5.2.1. Since the linear
operations on the LHS of Equation 5.2.1 affect the amplitude and phase of iSS
without affecting the frequency. we may consider iSS to be of the form:
i SS =I m cos ( ωt +θ−α ) (5.2.2)
where Im and  are unknowns to be determined so as to satisfy Equation 5.2.1.
 Substituting iSS from Equation 5.2.2 in Equation 5.2.1:
I m [ −ωL sin ( ωt +θ−α )+ R cos ( ωt +θ−α ) ] =V m cos ( ωt+ θ ) (5.2.3)

 If the LHS of Equation 5.2.3 is multiplied and divided by √ R 2+ω2 L2 , it becomes:
I m√ R + ω L −
2 2 2
[ ωL
√ R +ω L
2 2 2
sin ( ωt+θ−α ) +
R
√ R +ω2 L2
2
cos ( ωt +θ−α )
] (5.2.4)
ωL
 Let  be the angle whose sine is √ R +ω L and whose cosine is therefore
2 2 2


R
√ R2 +ω2 L2 (Figure 5.2.1b). Equation 5.2.4 becomes:
I m √ R2 + ω2 L2 [ −sin β sin ( ωt +θ−α ) +cos β cos ( ωt +θ−α ) ] =V m cos ( ωt +θ )

or:
I m √ R2 + ω2 L2 [ cos ( ωt +θ+ β −α ) ] =V m cos ( ωt +θ ) (5.2.5)
 To equalize both sides of Equation 5.2.5 under all conditions, we must have
Vm
I m=
√ R2 + ω2 L2 and  = . It follows that:
Vm ωL
i SS= cos ( ωt +θ−α ) tan α=
√ R2 + ω2 L2 , R (5.2.6)




5-2/17

, Response of RL Circuit to Complex Sinusoidal Excitation
 Let:
v SRC =V m e j ( ωt +θ )=V m [ cos ( ωt +θ ) + jsin ( ωt +θ ) ] (5.2.7)
 Since the circuit is linear, superposition applies, and iSS = iSS1 + iSS2, where iSS1 is the
steady-state response to Vmcos(t + ), as given by Equation 5.2.6, and iSS2 is the
steady-state response to jVmsin(t + ).


 The excitation jVmsin(t + ) may be written as
(
jV m cos ωt+θ−
π
)
2 . Hence, iSS2 can
π
be obtained from iss1 by replacing  by ( – 2 ) and multiplying Vm by j. This gives:

i SS=
Vm
√ R2+ ω2 L2 [ (
cos ( ωt +θ−α )+ j cos ωt+ θ−α−
π
2 )]
Vm
= [ cos ( ωt+ θ−α ) + j sin ( ωt +θ−α ) ]
√ R 2 +ω 2 L2
Vm j( ωt+θ−α ) ωL
= e tan α=
√R 2 2
+ω L 2
, R (5.2.8)

Concept When a complex sinusoidal excitation vSRC is applied to an LTI
circuit, the response is a complex sinusoidal function whose real part is the
response to the real part of the excitation, Vmcos(t + ), applied alone, and
whose imaginary part is the response to the imaginary part of the excitation,
Vmsin(t + ), applied alone.
 In other words, the real and imaginary parts retain their separate identities in linear
operations, without any mutual interaction.




5-3/17
$5.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
derrickwesonga

Documento también disponible en un lote

Conoce al vendedor

Seller avatar
derrickwesonga University of South Africa (Unisa)
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
1 año
Número de seguidores
0
Documentos
12
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes