100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

Circuit Simplification

Puntuación
-
Vendido
-
Páginas
13
Subido en
10-11-2024
Escrito en
2012/2013

Transform your understanding of Circuit simplification with this indispensable set of notes, crafted specifically for electrical and computer engineering students. Dive into key concepts like circuit analysis, Ohm’s Law, Kirchhoff’s Laws, Thevenin’s and Norton’s theorems, and AC/DC circuit dynamics—all presented in an easy-to-follow format that breaks down complex ideas into manageable steps. Packed with clear explanations, illustrative examples, and expert problem-solving strategies, these notes are designed to make your study sessions more productive and engaging. Whether you're aiming for top exam scores, tackling challenging assignments, or seeking to solidify your teaching materials, these documents are your ticket to mastering Circuit simplification. Elevate your learning experience and boost your confidence with these comprehensive and expertly organized notes. Start excelling today—now available on Stuvia!

Mostrar más Leer menos
Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
10 de noviembre de 2024
Número de páginas
13
Escrito en
2012/2013
Tipo
Notas de lectura
Profesor(es)
Smr10
Contiene
Todas las clases

Temas

Vista previa del contenido

Chapter 4 Circuit Simplification


4.1 Thevenin’s Equivalent Circuit IL
Rsrc
 For a voltage divider supplying a load, the v-i
relation at the load terminals is given by +
Equation 2.7.5, which may be expressed as: V +
SRCoc VL Load
VL = VSRCoc – RsrcIL (4.1.1) –

where VSRCoc is the open-circuit voltage of an
equivalent source and Rsrc is the effective
Figure 4.1.1
source resistance (Figure 4.1.1).
 This circuit is in fact Thevenin’s equivalent circuit of the voltage divider as seen from
the load terminals and applies quite generally.

Concept In an LTI resistive circuit, the v-i characteristic at any specified
pair of terminals is that of an ideal voltage source in series with a source
resistance.
 To justify this, we consider
VSRC2
the representative, 10 
generalized three-mesh – +
circuit of Figure 3.6.1,
redrawn in Figure 4.1.2 10  I2 20 
with the 10  resistance in
mesh 3 considered as a 30 
VSRC1 + IL
I1
load resistance RL –
connected to terminals ab a +
IL
of the circuit, and I3 20  VL
RL
designated as IL. VSRC3 –
 The mesh current + – b
equations are:
Figure 4.1.2
40I1 – 10I2 – 20IL =
VSRC1
-10I1 + 60I2 – 30IL = VSRC2
-20I1 – 30I2 + 50IL = VSRC3 – VL (4.1.2)
where VL is considered as a voltage drop in mesh 3 and is included on the RHS of



4-1/13

, the equation for this mesh.
 Solving for IL and rearranging:

V L= [ 15 V SRC 1 +14 V SRC 2
23
+V SRC 3 − ]
430
23 L
I
(4.1.3)
 Equation 4.1.3 is of the form of Eq 4.1.1, where VSRCoc equals the bracketed terms,
and Rsrc = 430/23. Since the circuit of Figure 4.1.2 is quite arbitrary, it is concluded
that the v-i relation for any given circuit at specified terminals ab is the same, in
general, as that of an ideal voltage source VSRCoc in series with a resistance Rsrc.
 The VSRCoc-Rsrc circuit is the TEC of the given circuit at terminals ab and is the
simplest possible equivalent circuit, since it consists of just an ideal source and a
resistor. It is customary to refer to VSRCoc as the Thevenin voltage VTh, and to Rsrc as
the Thevenin resistance RTh.
 VTh is determined as the open-circuit voltage at specified pair of terminals. If
terminals ab in Figure 4.1.2 are open circuited, IL = 0 and the mesh current equations
for the circuit become:
40I1 – 10I2 = VSRC1
-10I1 + 60I2 = VSRC2 (4.1.4)
0 .6 V SRC 1 +0 .1 V SRC 2 0 .1 V SRC 1 +0. 4 V SRC 2
I1= I2=
 Solving for I1 and I2, 23 and 23 . From KVL,
VL = 30I2 + 20I1 + VSRC3. This gives: a
15 14
V Th = V SRC 1 + V SRC 2 +V SRC 3
23 23 (4.1.5) RTh
+
which is the open-circuit voltage determined above. VTh ISC

 RTh can be determined in one of two ways. The first
follows from TEC (Figure 4.1.3a) when terminals ab
(a) b
V Th
RTh = RTh IT
are short circuited, which gives: I SC . a

 In the above example, if terminals ab are short
circuited, VL = 0 and IL = ISC = +
VT
15 V SRC 1 +14 V SRC 2 +23 V SRC 3 –
=
430 . This gives

(b) b
430 Figure 4.1.3
RTh =
23 , as above.


4-2/13
$5.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
derrickwesonga

Documento también disponible en un lote

Conoce al vendedor

Seller avatar
derrickwesonga University of South Africa (Unisa)
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
1 año
Número de seguidores
0
Documentos
12
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes