100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Linear Algebra And Its Applications 6th Edition Solutions Manual PDF guaranteed pass latest

Puntuación
-
Vendido
-
Páginas
57
Grado
A+
Subido en
03-11-2024
Escrito en
2024/2025

Linear Algebra And Its Applications 6th Edition Solutions Manual PDF guaranteed pass latest Question 1 Which of the following is a property of a vector space? A) It must contain the zero vector. B) It must be finite-dimensional. C) It must contain an infinite number of vectors. D) It cannot be closed under scalar multiplication. Correct Answer: A) It must contain the zero vector. Rationale: A vector space must contain the zero vector as part of its axioms. It can be finite or infinite-dimensional and must be closed under vector addition and scalar multiplication. Question 2 If AAA is a 3×33 times 33×3 matrix, what is the maximum number of linearly independent columns it can have? A) 1 B) 2 C) 3 D) 4 Correct Answer: C) 3 Rationale: A 3×33 times 33×3 matrix can have at most 3 linearly independent columns, corresponding to its number of rows. Thus, the rank of matrix AAA can be at most 3. Question 3 What is the determinant of the matrix A=(1234)A = begin{pmatrix} 1 & 2 3 & 4 end{pmatrix}A=(1324)? A) -2 B) 2 C) 0 D) 1 Correct Answer: A) -2 Rationale: The determinant of a 2×22 times 22×2 matrix A=(abcd)A = begin{pmatrix} a & b c & d end{pmatrix}A=(acbd) is calculated as ad−bcad - bcad−bc. For matrix AAA: det(A)=(1)(4)−(2)(3)=4−6=−2.text{det}(A) = (1)(4) - (2)(3) = 4 - 6 = - (A)=(1)(4)−(2)(3)=4−6=−2. Question 4 If the eigenvalue of a matrix AAA is λlambdaλ, what can be said about the characteristic polynomial? A) It is linear. B) It is quadratic. C) It has λlambdaλ as a root. D) It is always positive. Correct Answer: C) It has λlambdaλ as a root. Rationale: The eigenvalue λlambdaλ of a matrix AAA is a solution to the characteristic polynomial, which is given by det(A−λI)=0text{det}(A - lambda I) = 0det(A−λI)=0. Thus, λlambdaλ is a root of this polynomial. Question 5 Which of the following statements is true about linear transformations? A) They always increase the dimension of a vector space. B) They map lines to lines or points. C) They cannot be represented by matrices. D) They are not defined for infinite-dimensional spaces. Correct Answer: B) They map lines to lines or points. Rationale: Linear transformations preserve the operations of vector addition and scalar multiplication, meaning that they map lines in the domain to lines in the codomain. Question 6 Consider the vectors v1=(100)mathbf{v_1} = begin{pmatrix} 1 0 0 end{pmatrix}v1=100 and v2=(010)mathbf{v_2} = begin{pmatrix} 0 1 0 end{pmatrix}v2=010. Are these vectors linearly independent? A) Yes B) No C) It depends on the context. D) Only if the third vector is included. Correct Answer: A) Yes Rationale: Two vectors are linearly independent if the only solution to c1v1+c2v2=0c_1mathbf{v_1} + c_2mathbf{v_2} = 0c1v1+c2v2=0 is c1=c2=0c_1 = c_2 = 0c1=c2=0. Since v1mathbf{v_1}v1 and v2mathbf{v_2}v2 point in different directions, they are indeed linearly independent. Question 7 What is the rank of the matrix B=()B = begin{pmatrix} 1 & 2 & 3 0 & 0 & 0 4 & 5 & 6 end{pmatrix}B=? A) 0 B) 1 C) 2 D) 3 Correct Answer: C) 2 Rationale: The rank of a matrix is the maximum number of linearly independent row or column vectors. Here, the first and the third rows are linearly independent, while the second row is a zero row. Thus, the rank is 2.

Mostrar más Leer menos
Institución
MATH101
Grado
MATH101











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
MATH101
Grado
MATH101

Información del documento

Subido en
3 de noviembre de 2024
Número de páginas
57
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

latest
bulletin




latest

,Linear Algebra And Its
Applications 6th Edition
Solutions Manual PDF
guaranteed pass
latest
Question 1

Which of the following is a property of a vector space?

A) It must contain the zero vector.
B) It must be finite-dimensional.
C) It must contain an infinite number of vectors.
D) It cannot be closed under scalar multiplication.

Correct Answer: A) It must contain the zero vector.
Rationale: A vector space must contain the zero vector as part of its axioms. It can
be finite or infinite-dimensional and must be closed under vector addition and
scalar multiplication.



Question 2

If AAA is a 3×33 \times 33×3 matrix, what is the maximum number of linearly
independent columns it can have?

A) 1
B) 2
C) 3
D) 4

,Correct Answer: C) 3
Rationale: A 3×33 \times 33×3 matrix can have at most 3 linearly independent
columns, corresponding to its number of rows. Thus, the rank of matrix AAA can
be at most 3.



Question 3

What is the determinant of the matrix A=(1234)A = \begin{pmatrix} 1 & 2 \\ 3
& 4 \end{pmatrix}A=(1324)?

A) -2
B) 2
C) 0
D) 1

Correct Answer: A) -2
Rationale: The determinant of a 2×22 \times 22×2 matrix A=(abcd)A =
\begin{pmatrix} a & b \\ c & d \end{pmatrix}A=(acbd) is calculated as ad−bcad -
bcad−bc.
For matrix AAA:

det(A)=(1)(4)−(2)(3)=4−6=−2.\text{det}(A) = (1)(4) - (2)(3) = 4 - 6 = -
2.det(A)=(1)(4)−(2)(3)=4−6=−2.


Question 4

If the eigenvalue of a matrix AAA is λ\lambdaλ, what can be said about the
characteristic polynomial?

A) It is linear.
B) It is quadratic.
C) It has λ\lambdaλ as a root.
D) It is always positive.

Correct Answer: C) It has λ\lambdaλ as a root.
Rationale: The eigenvalue λ\lambdaλ of a matrix AAA is a solution to the
characteristic polynomial, which is given by det(A−λI)=0\text{det}(A - \lambda I)
= 0det(A−λI)=0. Thus, λ\lambdaλ is a root of this polynomial.

, Question 5

Which of the following statements is true about linear transformations?

A) They always increase the dimension of a vector space.
B) They map lines to lines or points.
C) They cannot be represented by matrices.
D) They are not defined for infinite-dimensional spaces.

Correct Answer: B) They map lines to lines or points.
Rationale: Linear transformations preserve the operations of vector addition and
scalar multiplication, meaning that they map lines in the domain to lines in the
codomain.



Question 6

Consider the vectors v1=(100)\mathbf{v_1} = \begin{pmatrix} 1 \\ 0 \\ 0
\end{pmatrix}v1=100 and v2=(010)\mathbf{v_2} = \begin{pmatrix} 0 \\ 1 \\ 0
\end{pmatrix}v2=010. Are these vectors linearly independent?

A) Yes
B) No
C) It depends on the context.
D) Only if the third vector is included.

Correct Answer: A) Yes
Rationale: Two vectors are linearly independent if the only solution to
c1v1+c2v2=0c_1\mathbf{v_1} + c_2\mathbf{v_2} = 0c1v1+c2v2=0 is
c1=c2=0c_1 = c_2 = 0c1=c2=0. Since v1\mathbf{v_1}v1 and v2\mathbf{v_2}v2
point in different directions, they are indeed linearly independent.



Question 7

What is the rank of the matrix B=(123000456)B = \begin{pmatrix} 1 & 2 & 3
\\ 0 & 0 & 0 \\ 4 & 5 & 6 \end{pmatrix}B=104205306?
$17.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
JoyceWWales Teachme2-tutor
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
109
Miembro desde
2 año
Número de seguidores
16
Documentos
2040
Última venta
1 semana hace
MitchelleWales

HI, WELCOME TO MY PAGE EXCELLENT HOMEWORK HELP AND TUTORING ,ALL KIND OF QUIZ AND EXAMS WITH GUARANTEE OF AN A+ Hi there! I'm JOYCE, I'm, a dedicated medical doctor (MD) with a passion for helping students excel in their exams. With my extensive experience in the medical field, I provide comprehensive support and effective study techniques to ensure academic success. My unique approach combines medical knowledge with practical strategies, making me an invaluable resource for students aiming for top performance. Discover my proven methods and start your journey to academic excellence with me on Stuvia today and I'm here to provide high-quality study materials to help you succeed. With a focus on clarity and usefulness, my notes are designed to make your studying easier and more efficient. If you ever need assistance or have any questions, feel free to reach out.

Lee mas Leer menos
3.9

25 reseñas

5
14
4
1
3
6
2
1
1
3

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes