100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Extended Summary: Data Analytics for Business Intelligence (1BM110)

Puntuación
-
Vendido
-
Páginas
50
Subido en
27-10-2024
Escrito en
2022/2023

This is an extended summary of all lectures for the course Data Analytics for Business Intelligence (1BM110). This 50-page document (with a clickable table of contents for easier navigation) summarizes the essence of all topics covered in the course (as far as I could imagine when writing it). It includes as many images & visualizations as possible to clarify the concepts as much as possible, and make them easy to understand.

Mostrar más Leer menos
Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
27 de octubre de 2024
Número de páginas
50
Escrito en
2022/2023
Tipo
Resumen

Temas

Vista previa del contenido

1BM110 - course summary




Table of contents
Lecture 1: introduction
Big data
Business decisions
Business analytics
Data mining
Cross Industry Standard Process for Data Mining (CRISP-DM) framework
Lecture 1: data visualization & preprocessing
Data understanding
Categorical data
Numerical data
Non-numerical data
Misleading visualizations
Data preparation
Data integration
Data cleaning
Data reduction
Data transformation
Lecture 2: supervised learning 1
Introduction to supervised learning
Classification models
K-nearest-neighbour classifier (KNN)
Naïve Bayes classifier
Decision trees
Classification performance measurement
Binary classification
Receiver Operating Characteristic (ROC) curve
Kappa coefficient
Regression models
Linear regression
Regression vs classification
Experimental setup
Lecture 3: supervised learning 2
Support Vector Machines (SVMs)
Non-linear SVMs
Bias-variance trade-off




1BM110 - course summary 1

, Ensemble methods
Bagging
Boosting
Unsupervised learning (clustering)
Clustering
K-means clustering
Hierarchical clustering
Applying clustering algorithms
Lecture 4: temporal data
Grouping sequences & mapping
Mapping methods
Dynamic Time Warping (DTW)
Response features
Markov chains
Maximum likelihood estimation
Association analysis
Lecture 5: neural networks & Deep Learning (DL)
Perceptron & sigmoid neuron
Multi-layer perceptron (multi-layer neural network)
Training neural networks
Gradient descent
Momentum
Regularization
Lectures 6 & 7: Natural Language processing (NLP)
Domain & corpus
Corpus
Pre-processing
Linguistic processing
Knowledge resources
Text representation
Bag-of-Words (BoW) model
n-grams
Linguistic features model vs BoW model
Distributional Semantic Models (DSM)
Supervised NLP tasks
Unsupervised NLP tasks
Lecture 8: eXplainable Artificial Intelligence (XAI)
Interpretability vs explanations
Transparency
White boxes (intrinsically interpretable models)
Model-agnostic explanation methods
Model-specific explanation methods (for DNN)
Evaluation & measures




Lecture 1: introduction
Big data
Volume: quantity of generated and stored data

Variety: type and nature of the data




1BM110 - course summary 2

, Velocity: speed at which the data is generated
and processed




Business decisions
Decision Support System (DSS): computerized program used to support determinations, judgments,
and courses of action in an organization or a business.




Convential decision support: emphasis on deduction.


Business Intelligence (BI): data-driven DSS; methods that facilitate decision-making by integrating
information and processes through tools that transform data into useful and actionable information.




Business intelligence: emphasis on induction.


Business analytics
Descriptive analytics: using data to understand past and current business performance.

Answers questions such as:

What has occurred?

How much did we sell in each region?

What type of customer returns products?

Techniques & methods: reporting, dashboards, summarization, visualization

Segmentation: clustering, associate rules

Predictive analytics: analyzes past performance in an effort to predict the future.

Answers questions such as:

What will occur?

How much will we sell in each region?

Techniques & methods:

Regression & classification




1BM110 - course summary 3

, Text mining

Prescriptive analytics: identifies the best alternatives to minimize or maximize some objective.

Answers questions such as:

What should occur?

How much should we produce to maximize profit?

Techniques & methods: mathematical optimization models, heuristics


Data mining
Data mining: identifying patterns in data.




Examples of data mining.


Real-world data mining:

Too much data → data might be polluted

Unclear which data attributes are important

Results do not make sense

Cross Industry Standard Process for Data Mining (CRISP-DM) framework
Steps in the CRISP-DM framework:

1. Business understanding

2. Data understanding

3. Data preparation

4. Modeling

5. Evaluation

6. Deployment




The CRISP-DM framework.




1BM110 - course summary 4
$9.00
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
im2123

Conoce al vendedor

Seller avatar
im2123 Technische Universiteit Eindhoven
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
3
Miembro desde
1 año
Número de seguidores
0
Documentos
14
Última venta
1 mes hace

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes