100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary MVDA SPSS Exam Guide

Puntuación
-
Vendido
-
Páginas
25
Subido en
24-10-2024
Escrito en
2023/2024

Dit document bevat de meeste (bijna alle) belangrijke opdrachten van de werkgroepen verwerkt in een exam guide. De soort vraag staat dik gedrukt, met daaronder de stappen hoe je het in SPSS moet verwerken (om evt mee naar je tentamen te nemen maar als je de vraagstelling niet meer snap/niet meer weet hoe en wat ;) This document contains most (if not all) important exercises from the workgroups incorporated into an exam guide. The type of question is in bold, with the accompanying steps on how to process it in SPSS (to take with you to your exam possibly, for instance if you do not understand the question or phrasing / no longer know what to do ;)

Mostrar más Leer menos
Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
24 de octubre de 2024
Número de páginas
25
Escrito en
2023/2024
Tipo
Resumen

Temas

Vista previa del contenido

Week 1 | Multiple Regression Analysis (MRA)
When? Independent X1, X2 (INT) + Dependent Y (INT)
Y is always regressed on X
Q: Calculate the Pearson correlations between the five variables.
Analyze > Correlate > Bivariate > insert variables >


Q: What is the sample size N?
Under ‘N’


Q: Does it make sense to perform a linear regression of GPA on IQ, age, gender and/or
self-concept?
Check ‘Correlations’ table and check for each variable the correlation and the significance, if it’s
significant we can say it makes sense or think theoretically


Q: Which variable is likely to be a good predictor of GPA?
Check ‘Correlations’ table and check for each variable the correlation and the significance, if it’s
significant it is likely to be a good predictor


Next, perform a linear regression of GPA on IQ, age, gender and self-concept. In Statistics, ask for
part and partial correlations, and collinearity diagnostics. In Save ask for Cook’s distances and
Leverage values.


Q: Can the null hypothesis of no relationship between GPA and IQ, age, gender and/or
self-concept be rejected?
< Analyze > Regression > Linear > in ‘Statistics’ check ‘part and partial correlations’ and ‘collinearity
diagnostics’ > in ‘Save’ ask for ‘Cook’s distances’ and ‘Leverage values’
H0: none of the predictors are good predictors
Ha: at least some of the predictors are good predictors
• Check ANOVA table > report the F value → e.g. F(dfregression, dfresidual) = value → F(4,73) =
23.117, p<0.001
• If F value is significant, we can reject H0, at least some of the predictors are good predictors


Q: How much variance of GPA is explained by IQ, age, gender and SC together?
• Look at ‘Model Summary’ table > look at R squared > report the value


Q: What predictor explains the most unique variance?
• Look at ‘Coefficients’ table > under ‘correlations’ look at the ‘part’ column > the biggest number
should be squared, that variable explains the most unique variance


Q: Is there evidence of multicollinearity in the predictors?
Test whether we have too much of a dependence between our predictors
• Look at ‘Coefficients’ table and under VIF column > VIF should be below 10 > Tolerance needs to
be bigger than 0.1

,Q: Do Cook’s distances and Leverage values suggest the presence of outliers?
• Formula center leverage value: 3(p+1)/N where p = number of predictors > the value calculated is
the largest value we can have in the centered leverage values > look at ‘Residuals Statistics’ under
‘maximum’ column at ‘centered leverage value’ > determine whether the calculate value is higher
than the maximum value in the table > if value calculated is bigger than given value, it suggests
outliers
• Cook’s distance tells us whether an outlier is influential > look at ‘Residuals Statistics’ > check
Cook’s distance value under ‘minimum’ and ‘maximum’ > should not be higher than 1


Q: If one or more outliers are detected, all previous steps are repeated with exclusion of the
outlier(s). Use Selection to get rid of the outlier(s).
• Look at Data View tab > go to new Cook’s Distance variable > select with right mouse and click
‘sort descending’ > look at which participants have a distance above 1 > don’t delete the participant
> go to ‘Data’ and ‘Select cases’ > click ‘if conditions is satisfied’ and insert criteria of the study (e.g.
participants should be below the age of 14)


Q: Finally, remove the non-significant predictors from the model
• Run the analysis of LRA again > remove Cook’s Distance and Leverage under ‘Save’ > Look at
‘Coefficients’ table and look at whether the variables are significant (<0.05) and determine the ones
that are not significant


Q: Perform a linear regression of GPA on the remaining predictors. In Plots, make a scatter plot
of the standardized predicted values versus the standardized residuals, and ask for the normal
probability plot.
• Run LRA again > remove non-significant predictors > in ‘Plots’ add ZPred to X and ZResid to Y and
check normality probability plot


Q: Is there evidence of non-linearity, heteroscedasticity or non-normality of the residuals?
• Look at ‘Scatterplot’
• Linearity = if one creases the other increases, if one decreases the other one decreases > the plot
should look like there is no relationship (look a bunch of random spots) and if the best description is
a horizontal line there is evidence of non-linearity
• Heteroscedasticity → we want homoscedasticity > so we don’t want differences > check from
value 0 on the Y-axis, if there is approx the same amount of dots on both sides, we don’t violate the
assumption of heteroscedasticity
• Normality → look at ‘Normal P-P Plot of Regression’ > the more the dots are on the line the better
the normality → ??????


Q: What is the estimated regression equation? Interpret the regression coefficients.
• Look at ‘Coefficients’ table > constant = intercept (b0) > b1 = variables > add constant and all
variables in the equation
• ŷ = b0 + b1(var) → use unstandardized


Q: How much variance of GPA is explained by the predictors?

, • Look at ‘Model Summary’ and R squared


Q: What predictor explains the most unique variance?
• Look at ‘Coefficients’ table > look under ‘correlations’ and ‘part’ > report the biggest number and
square it


Hierarchical Regression Analysis
Q: How much variance of VarX is explained by VarY?
• Check ‘Model Summary’ table > check R squared


Q: add VarZ as a predictor in a second block to the linear model. In Statistics, ask for R squared
change
Analyze > Regression > Linear > add predictor to Independent in Next’ Block > in ‘Statistics’ ask for
‘R squared change’ > check the same options under ‘Statistics’


Q: Does adding VarZ significantly improve the linear model?
• Look at the ‘Model Summary’ table > look at R squared change > if the model contributed, the
value under model 2 should be positive (and thus the R square has become higher with model 2 >
report the significaince with F and df


Q: Is there evidence of non-linearity, heteroscedasticity or non-normality of the residuals?




In this example we don’t violate the assumption of linearity, heteroscedasticity, or normality


Q: What is the estimated regression equation? Interpret the regression coefficients.
• Do the same as a normal regression equation, except we now look at the values for model 2
• If everything else remains the same, improving 1 point of the score of VarY (independent), would
make the predicted score of VarX (dependent) … (value of VarY B unstandardized) higher
• If we hold everything else the same, if a participant scores one point higher on VarZ, the predicted
value of VarX (dependent) would become (value of VarZ B unstandardized) higher


Q: How much variance of VarX is explained by VarY and VarZ together?
• Look at ‘Model Summary’ > look at R square model 2 > that would explain the variance


Q: How much variance is uniquely explained by neuroticism?
$4.71
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
larathape

Conoce al vendedor

Seller avatar
larathape Universiteit Leiden
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
5 año
Número de seguidores
0
Documentos
1
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes