100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Discrete Structures Final Exam Questions and Answers 100% Solved

Puntuación
-
Vendido
-
Páginas
17
Grado
A+
Subido en
22-10-2024
Escrito en
2024/2025

Discrete Structures Final Exam Questions and Answers 100% Solved How many relations are there on a set |n| ? - 2^(n^2) relations out degree - # of things 'a' relates to (# of 1's in the row of the matrix) in degree - # of things that relate to 'a' (# of 1's in the column of the matrix) cycle - a path the begins and ends at the same vertex reflexive - -every element is related to itself -on a digraph, each element will have an arrow pointing to itself -on a matrix, there will be 1's on the main diagonal irreflexive - -no element is related to itself -on the digraph, no element will have an arrow pointing to itself -on a matrix, there will be 0's on the main diagonal symmetric - - (a, b) ∈ R, then (b, a) ∈ R

Mostrar más Leer menos
Institución
Discrete
Grado
Discrete










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Discrete
Grado
Discrete

Información del documento

Subido en
22 de octubre de 2024
Número de páginas
17
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

©JOSHCLAY 2024/2025. YEAR PUBLISHED 2024.

Discrete Structures Final Exam

Questions and Answers 100% Solved


How many relations are there on a set |n| ? - ✔✔2^(n^2) relations

out degree - ✔✔# of things 'a' relates to (# of 1's in the row of the matrix)

in degree - ✔✔# of things that relate to 'a' (# of 1's in the column of the

matrix)

cycle - ✔✔a path the begins and ends at the same vertex

reflexive - ✔✔-every element is related to itself

-on a digraph, each element will have an arrow pointing to itself

-on a matrix, there will be 1's on the main diagonal

irreflexive - ✔✔-no element is related to itself

-on the digraph, no element will have an arrow pointing to itself

-on a matrix, there will be 0's on the main diagonal

symmetric - ✔✔- (a, b) ∈ R, then (b, a) ∈ R

,©JOSHCLAY 2024/2025. YEAR PUBLISHED 2024.

-every element in the relation, also has its reverse (if (1,2) is in the relation,

(2,1) must also be in the relation)

-on the digraph, nodes will point at each other (two way streets)

-the original matrix is equal to itself transposed

asymmetric - ✔✔- (a, b) ∈ R, then (b, a) ∉ R

- no element has its reverse (no symmetric pairs)

-on the digraph, all paths are one way

-on the matrix, if Mij = 1, then Mji = 0

-a relation is asymmetric iff it is antisymmetric and irreflexive

-a transitive relation is asymmetric iff it is irreflexive

antisymmetric - ✔✔-if (a, b) ∈ R and (b, a) ∉ R, then a=b

-the only symmetric pairs are elements related to themselves

-on the matrix, if i≠j, then Mij = 0 or Mji = 0

transitive - ✔✔-(a, b) ∈ R and (b, c) ∈ R, then (a,c) ∈ R

-on the matrix, if Mij = 1 and Mjk = 1, then Mik = 1

-a transitive relation is asymmetric iff it is also irreflexive

equivalence relation - ✔✔A relation that is reflexive, symmetric, and

transitive

, ©JOSHCLAY 2024/2025. YEAR PUBLISHED 2024.

equivalence class - ✔✔an equivalence class is part of an equivalence

relation. If the relation was people are related if they are sitting in the same

row, all of the people in one row would be an equivalence class

closure - ✔✔the smallest possible addition to a relation in order to achieve

desired properties (i.e. the smallest amount of elements you could add to a

relation to make it reflexive)

everywhere defined - ✔✔-Dom(f) = A

-every element in the domain has at least one corresponding element in the

range

surjective - ✔✔Ran(f) = B

-for every element in the range, there is at least one corresponding element

in the domain

injective - ✔✔for every element in the range, there is exactly one

corresponding element in the domain.

bijection - ✔✔a function that is both surjective and injective

permutation - ✔✔a bijection from a set to itself

ex.

123456
$10.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
JOSHCLAY West Governors University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
217
Miembro desde
2 año
Número de seguidores
14
Documentos
17198
Última venta
13 horas hace
JOSHCLAY

JOSHCLAY EXAM HUB, WELCOME ALL, HERE YOU WILL FIND ALL DOCUMENTS & PACKAGE DEAL YOU NEED FOR YOUR SCHOOL WORK OFFERED BY SELLER JOSHCLAY

3.6

42 reseñas

5
16
4
7
3
9
2
5
1
5

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes