100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

COS3712 Exam pack 2024(Computer Graphics)

Puntuación
-
Vendido
-
Páginas
111
Grado
A+
Subido en
04-10-2024
Escrito en
2024/2025

COS3712 Exam pack 2024(Computer Graphics) With accurate answers and assurance that they are in the exam

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
4 de octubre de 2024
Número de páginas
111
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

COS3712 EXAM PACK
2024

QUESTIONS AND
ANSWERS
FOR ASSISTANCE CONTACT
EMAIL:

, lOMoARcPSD|31863004




2 COS340-A
October/November 2009

QUESTION 1 [10]
a) OpenGL uses z-buffering for hidden surface removal. Explain how the z-buffer algorithm
and give one advantage of using this method. (5)

Answer:

OpenGL uses a hidden-surface method called z-buffering
that saves depth information into an extra
buffer which is used as objects are rendered so that parts of objects that are behind other ob
appear in the image. The z-buffer records the depth or the distance from the Thus,
COPas of a pixel.
polygons are scan-converted in random order, the algorithm checks the z-value of the pixel
coordinates (in the frame buffer) that it is trying to draw to. If the existing pixel at these coo
(i.e. if there already was a pixel) has a z-value further from the viewer than the pixel we are
draw, then the colour and depth of the existing pixel are updated, otherwise it continues wit
to the colour buffer or the depth buffer.

Advantages:(1 mark for either answer)
easy to implement in either software or hardware
it is compatible with pipeline architectures - can execute at the same speed at which vertice




b) Orthogonal, oblique and axonometric view scenes are all parallel view scenes. Define th
parallel view and explain the differences between orthogonal, axonometric, and oblique
scenes. (5)


Answer:

Parallel views - views with the COP at infinity.

Orthogonal views - projectors are perpendicular to the projection plane and projection plane
to one of the principal faces of an object. A single orthogonal view is restricted to one princi
of an object.

Axonometric view - projectors are perpendicular to the projection plane but projection plane
any orientation with respect to object.

Oblique projection - projectors are parallel but can make an arbitrary angle to the projection
and projection plane can have any orientation with respect to object.




[TURN OVER]

, lOMoARcPSD|31863004




3 COS340-A
October/November 2009

QUESTION 2 [8]
a) Define the term homogeneous coordinates and explain why they are used in computer

Answer:

Homogeneous coordinates are four dimensional column matrices used to represent both po
vectors in three dimensions.
When points and vectors are represented using 3-dimensional colum
matrices one cannot distinguish between a point and a vector, with homogeneous coordinat
can make this distinction.

marks can be awarded for any of the points mentioned below:
A matrix multiplication in 3-dimensions cannot represent a change in frames, while this can
using homogeneous coordinates.
All affine transformations can be represented as matrix multiplications in homogeneous coo
Less arithmetic work is involved when using homogeneous coordinates.
The uniform representation of all affine transformations makes carrying out successive tran
far easier than in 3 dimensional space.
Modern hardware implements homogeneous coordinates operations directly, using paralleli
achieve high speed calculations.

b) Consider the line segment with endpoints a and b at (1, 2, 3) and (2, 1, 0) respectively.
the coordinates of vertices a and b that result after an anticlockwise rotation by 15 abo
axis.(Show your workings) (4)

Hint: The transformation matrix for rotation around the z-axis is

(where θ is the angle of anticlockwise rotation).




[TURN OVER]




Downloaded by Gabriel Musyoka ()

, lOMoARcPSD|31863004




4 COS340-A
October/November 2009

Then, to rotate a' and b' by 15 about the z-axis, we use the rotation matrix




Similarly




So a'' = (0.448, 2.191, 3)
and b'' = (1.673, 1.484, 0) (4)


QUESTION 3 [8]

OpenGL is a pipeline model. In a typical OpenGL application, a vertex will go through a seque
transformations or change of frames. In each frame the vertex has different coordinates.

a) Name these coordinates in the order that they occur in the OpenGL vertex transformation
[5]




[TURN OVER]




Downloaded by Gabriel Musyoka ()
$2.50
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
gabrielmusyoka940 db
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
1461
Miembro desde
2 año
Número de seguidores
247
Documentos
1488
Última venta
5 días hace
Bstudy

provides latest exam paper

3.2

214 reseñas

5
68
4
28
3
49
2
20
1
49

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes