100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

A First Course on Symmetry, Special Relativity and Quantum Mechanics: The Foundations of Physics, First Edition (Instructor Solution Manual, Solutions)

Puntuación
-
Vendido
-
Páginas
98
Grado
A+
Subido en
25-09-2024
Escrito en
2024/2025

A First Course on Symmetry, Special Relativity and Quantum Mechanics: The Foundations of Physics, First Edition (Instructor Solution Manual, Solutions) A First Course on Symmetry, Special Relativity and Quantum Mechanics: The Foundations of Physics (Undergraduate Lecture Notes in Physics) 1st ed. 2024 Edition by Gabor Kunstatter (Author), Saurya Das

Mostrar más Leer menos
Institución
Symmetry, Special Relativity And Quantum Mechanics
Grado
Symmetry, Special Relativity and Quantum Mechanics











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Symmetry, Special Relativity and Quantum Mechanics
Grado
Symmetry, Special Relativity and Quantum Mechanics

Información del documento

Subido en
25 de septiembre de 2024
Número de páginas
98
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Chapter 16

Solutions to Exercises

16.1 Introduction
No exercises


16.2 Symmetry and Physics

Exercise 1. Calculate the length D of roadway in Fig. 2.3 as a function
of l and a, and verify that it is minimized by the value of l given in Eq.(2.1)
above.
Solution:
Each diagonal segment on the right hand side of Fig. 2.3 has length:
s
 a 2  a − l 2
d(l) = + (16.1)
2 2

The total length of pavement D(l) as a function of l is:
s
 a 2  a − l 2
D(l) = l + 4d = l + 4 + (16.2)
2 2




496

,CHAPTER 16. SOLUTIONS TO EXERCISES 497

To find the value of lmin that minimizes the function D(l) we have to solve:

dD(l) 2(a − l)(−1)
= 1+ p
dl lmin a2 + (l − a)2
= 0 (16.3)

A bit of algebra yields:
a2
(a − lmin )2 = (16.4)
3
Since l must be less than a the relevant solution is:
 
1
lmin = a 1 − √ (16.5)
3
Plugging this into the expression for D(l) we find:
 
1
D(lmin ) = a 1 + √ (16.6)
3
which is less than the length of pavement required by building two diagonal
roads directly through the center of the square, namely:
√ √
Ddiagonals = 2 a2 + a2 = 2 2a (16.7)

A straightforward calculation verifies that

d2 D(l)
<0 (16.8)
dl2 lmin

so that lmin is indeed a minimum as required.




Exercise 2. Consider three towns, called N (for North), SW and SE,
respectively, located a distance a apart at the vertices of an equilateral tri-
angle, as shown in Fig.[2.4]. We wish to build a network of roads connecting
all three towns such that the roads (shown in blue) meet at an arbitrary
point P along the line joining the center of the triangle to the northern town
at some distance l from N . Show that the minimum total length for such a

,CHAPTER 16. SOLUTIONS TO EXERCISES 498

configuration of roads occurs when l = a/ 3, so that the least expensive way
to join the towns is to have the three segments of road meet at the center,
C. Is there symmetry breaking in this case? Explain.
Hint: Use the law of cosines to figure out the distance from P to the other
two towns SW and SE. This should give you an expression for the total
length of the three roads that join P to N , SW and SE. Finally, minimize
the total length of pavement with
√ respect to the parameter l and show that
the minimum occurs at l = a/ 3.




Figure 16.1: Three towns to be joined by shortest road.


Solution:
Consider the triangle with vertices N-P-SE. The angle at each vertex in the
equilateral triangle is 60◦ , so that the angle between the lines N-P and N-SE
is 30◦ . Applying the cosine law:

d2 (l) = l2 + a2 − 2al cos(30)

q
→ d(l) = l2 + a2 − 3al (16.9)

The total length of road D(l) is:

D(l) = 2d(l) + l

q
= 2 l2 + a2 − 3al + l (16.10)

, CHAPTER 16. SOLUTIONS TO EXERCISES 499

We want to find the value lmin of l that minimizes D(l):

dD(l) 2l − 3a
= 2 p √ +1
dl lmin 2 l2 + a2 − 3al
= 0q
√ √
2
→ 2lmin − 3a = lmin + a2 − 3al (16.11)

Squaring both sides of the above gives a quadratic equation for lmin in terms
of a whose solution is:

(3 ± 1) 3
lmin = a (16.12)
2
Since we need lmin to be less than a the physical solution is the minus sign,
so that: √
lmin = 3a (16.13)
A straightforward calculation verifies that

d2 D(l)
>0 (16.14)
dl2 lmin

so that lmin is indeed a minimum as required.




Exercise 3. Derive Equation (2.2) using the diagram in Fig. 2.5. The
distances a, b and c are given. You can use the fact that the total time Ttot
taken along Path 2 is:
p p
c21 + b2 c22 + a2
Ttot = + (16.15)
VG VS
and find the equation for c1 that minimizes Ttot . Hint: in order to solve the
resulting equation, you may need:
c1
= tan(θG )
b
c2
= tan(θS ) (16.16)
a
$21.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Topscorer london
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
117
Miembro desde
5 año
Número de seguidores
13
Documentos
454
Última venta
18 horas hace
Top Scorer

Helping all Students fulfill their educational, career and personal goals.

4.3

24 reseñas

5
16
4
3
3
3
2
0
1
2

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes