100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

PHY1505 Assignment 4 (DETAILED ANSWERS) 2024 - DISTINCTION GUARANTEED

Puntuación
-
Vendido
-
Páginas
15
Grado
A+
Subido en
20-09-2024
Escrito en
2024/2025

PHY1505 Assignment 4 (DETAILED ANSWERS) 2024 - DISTINCTION GUARANTEED - DISTINCTION GUARANTEED - DISTINCTION GUARANTEED Answers, guidelines, workings and references ..1. A ball drops some distance and loses 30 J of gravitational potential energy. Do NOT ignore air resistance. How much kinetic energy did the ball gain? 2. The plot in the figure shows the potential energy of a particle, due to the force exerted on it by another particle, as a function of distance. At which of the three points labeled in the figure is the magnitude of the force on the particle greatest? 3. An 8.0-kg block is released from rest, with v1 = 0.00 m/s, on a rough incline, as shown in the figure. The block moves a distance of 1.6-m down the incline, in a time interval of 0.80 s, and acquires a velocity of v2 = 4.0 m/s. How much work does gravity do on the block during this process? 4. You do 174 J of work while pulling your sister back on a swing, whose chain is 5.10 m long. You start with the swing hanging vertically and pull it until the chain makes an angle of 32.0° with the vertical with your sister at rest. What is your sister's mass, assuming negligible friction? 5. A tennis ball bounces on the floor three times. If each time it loses 22.0% of its energy due to heating, how high does it rise after the third bounce, provided we released it from the floor? 6. A 60.0-kg person drops from rest a distance of 1.20 m to a platform of negligible mass supported by an ideal stiff spring of negligible mass. The platform drops 6.00 cm before the person comes to rest. What is the spring constant of the spring? 7. A block slides down a frictionless inclined ramp. If the ramp angle is 17.0° and its length is find the speed of the block as it reaches the bottom of the ramp, assuming it started sliding from rest at the top. 8. A projectile is fired from ground level at an angle of 40.0° above horizontal at a speed of 30.0 m/s. What is the speed of the projectile when it has reached a height equal to 50.0% of its maximum height? 9. An object is attached to a hanging unstretched ideal and massless spring and slowly lowered to its equilibrium position, a distance of 6.4 cm below the starting point. If instead of having been lowered slowly the object was dropped from rest, how far then would it then stretch the spring at maximum elongation? 10. A 5.00-kg object moves clockwise around a 50.0 cm radius circular path. At one location, the speed of the object is 4.00 m/s. When the object next returns to this same location, the speed is 3.00 m/s. 11. A 2.5-kg box, sliding on a rough horizontal surface, has a speed of 1.2 m/s when it makes contact with a spring (see the figure). The block comes to a momentary halt when the compression of the spring is 5.0 cm. The work done by friction, from the instant the block makes contact with the spring until it comes to a momentary halt, is -0.50 J. (a) What is the spring constant of the spring? (b) What is the coefficient of kinetic friction between the box and the rough surface? 12. A force on an object is given by F(x) = ( -4.00 N/m)x + ( 2.00 N/m3)x3. What is the change in potential energy in moving from x = 1.00 m to x = 2.00 m? Physics for Scientists and Engineers, 4e (Knight) Chapter 11 Impulse and Momentum 13. A firecracker breaks up into several pieces, one of which has a mass of 200 g and flies off along the x-axis with a speed of 82.0 m/s. A second piece has a mass of 300 g and flies off along the y-axis with a speed of 45.0 m/s. What are the magnitude and direction of the total momentum of these two pieces? 14. During a collision with a wall, the velocity of a 0.200-kg ball changes from 20.0 m/s toward the wall to 12.0 m/s away from the wall. If the time the ball was in contact with the wall was 60.0 ms, what was the magnitude of the average force applied to the ball? 15. A 620-g object traveling at 2.1 m/s collides head-on with a 320-g object traveling in the opposite direction at 3.8 m/s. If the collision is perfectly elastic, what is the change in the kinetic energy of the 620-g object? 16. A 2.3-kg object traveling at 6.1 m/s collides head-on with a 3.5-kg object traveling in the opposite direction at 4.8 m/s. If the collision is perfectly elastic, what is the final speed of the 2.3-kg object? 17. A 480-kg car moving at 14.4 m/s hits from behind a 570-kg car moving at 13.3 m/s in the same direction. If the new speed of the heavier car is 14.0 m/s, what is the speed of the lighter car after the collision, assuming that any unbalanced forces on the system are negligibly small? 18. An 8.0-g bullet is shot into a 4.0-kg block, at rest on a frictionless horizontal surface (see the figure). The bullet remains lodged in the block. The block moves into an ideal massless spring and compresses it by 8.7 cm. The spring constant of the spring is 2400 N/m. Determine the initial velocity of the bullet. 19. A car heading north collides at an intersection with a truck of the same mass as the car heading east. If they lock together and travel at 28 m/s at 46° north of east just after the collision, how fast was the car initially traveling? Assume that any other unbalanced forces are negligible. 20. A 15-g bullet is shot vertically into a 2-kg block. The block lifts upward 8.0 mm (see the figure). The bullet penetrates the block and comes to rest in it in a time interval of 0.0010 s. Assume the force on the bullet is constant during penetration and that air resistance is negligible. Determine the kinetic energy of the bullet. 21. A block of mass m = 8.40 kg, moving on a horizontal frictionless surface with a speed 4.20 m/s, makes a perfectly elastic collision with a block of mass M at rest. After the collision, the 8.40 block recoils with a speed of 0.400 m/s. In the figure, the blocks are in contact for 0.200 s. Find the magnitude of the average force on the 8.40-kg block, while the two blocks are in contact.

Mostrar más Leer menos
Institución
Grado








Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
20 de septiembre de 2024
Número de páginas
15
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

$3.09
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
VarsityC AAA School of Advertising
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
28685
Miembro desde
8 año
Número de seguidores
13258
Documentos
3117
Última venta
3 días hace

4.1

2819 reseñas

5
1490
4
581
3
392
2
117
1
239

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes