100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

Machine Learning 2 Samenvatting/College aantekening Endterm

Puntuación
-
Vendido
2
Páginas
15
Subido en
12-09-2024
Escrito en
2023/2024

In dit document staat per college alle informatie die ik heb verzameld (incl. tekeningen en cuts uit de slides) om te studeren voor de Endterm van Machine Learning 2.

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
12 de septiembre de 2024
Número de páginas
15
Escrito en
2023/2024
Tipo
Notas de lectura
Profesor(es)
Heysem kaya & meaghan fowlie
Contiene
Todas las clases

Temas

Vista previa del contenido

PLA maximizes data
wiw Scalar
overall variance
of the
of directions
=

ra along a small set ,
who
info on class labels

WWT = matrix
-C




Lecture 9 og(10/23
instances x
features
The following notation will be used: * nxd = matrix




Reasons to reduce dimensionality:
No
-Reduces time complexity; less computation
-Reduces space complexity; fewer parameters
* 1st Axis PCA creates accounts
-Saves cost of observing/measuring features
-Simpler models are more robust in small datasets for most variation in data
-More interpretable; simpler explanation
-Data visualisation (structure, groups, outliers) if plotted in 2 or 3 dimensions
Unsupervised
Feature selection: (subset selection algorithms): choosing k<d important features and ignoring the remaining d - k
->preferred when features are individually powerful/meaningful
Feature extraction: project the original x i, i=1,…,d dimensions to new k<d dimensions zj, j=1,…,k)
->preferred when features are individually weak and have similar variance
We want to maximise

*
PCA (Principal Component Analysis); Find a low-dimensional space s.t. when x is projected there, information loss is
info density
low

minimised By leaving out column don't loose lot of info
a , we a


-The projection of x on the direction of w is: z = w Tx a


-Find w s.t. Var(z) is maximised (subject to |w| = 1)
constraint wisunit vet
minimize
function
a
Considering a constrained optimisation problem min x Tw subject to Aw = b, w ∈ S w varianeas
Lagrangian Relaxation method relaxes the explicit linear (equality) constraints by introducing a langrange multiplier
t
vector λ and brings them into the optimization function: min x tw + λ (Aw - b) subject to w ∈ S
The langrangian function of the original problem can be expressed as: L(λ) = min{x t w + λ (Aw - b) | w ∈ S}
t

T
PCA makes sure z = W (x - m), where the columns of W are the eigenvectors of ∑ and m is sample mean;
Centers the data at the origin and rotates the axes
Zwi Xw =
,
,
rector
with WT [W X O
, ,
=
2Zw
& xWiw,
,
-




=
zaw , =
0




pick largest eigenvalue
from [+ biggest value
of
variance
for projected data X1 Xi
PoV (Proportion of Variance): X x2 xk XdS
+. .. +


, + +... + +... +


when λ i are sorted in descending order, typically you can stop at PoV > 0.9 or elbow data visualisation/dimensionality reduction
PCA can be applied to clean out outliers from data, to de-noise, and learn/explore common patterns(eigenvectors)
T
Singular Value Decomposition: X = VAW is a dimensionality/data reduction method
U V = NxN ;contains eigenvectors of XX X USWT
T
=
C
eigenvalues of
w T
W = dxd ;contains eigenvectors of X X AV = WTX A = VXWT Given X centered ; C =
represent variances
A = Nxd ;contains singular values on its first k diagonal of principal components
S
Singular values in SVD are
eigenvalues
[
represent amount
of variance of each vector




LDA Linear Discriminant Analysis (k=2 classes) focus is separability between classes on

*
Find a low-dimensional space s.t. when x is projected, classes are well-separated
Find w that maximises =>
s see axis
maxseparationbetweenmeansofprojecte
new

new axis




S
We come to deal with between-class scatter:
eigenvectors basedt
And within-class scatter: (k=2, binary classification case)

Fishers Linear Discriminant (k=2 classes)
~ between
3
. within




Reduce
dimensionality to 1

, SVD VAWT X is mean-normalized how
: X =
,
Assuming ,
are the

C XTX/N-1 and related ?
eigenvalues of singular values of SVD
=




singular values in SVD
of mean-normalized X are
directly related to the
eigenvalues of cov-matrix C ,
so
singular values provide info about the

amount
of variance explained by each principal component just like ,



the eigenvalues of C .


Largest singular value* largest eigenvalue


Find point central to all classes
min . distance between each class &
the central point while min Scatter
, .




d + d2 + d2/52 + 52 + 52




Vector C WIWT CWWT
projection Imagine light above under
= =



~ U where the red arrow shadows
,
matrix
of eigenvectorsC diagonal matrix of eigenvalues (
WTW I
are
projected on the
target vector eigenvectors of (in W are
orthogonal to each other >
-
=




u = (2) unit vector (has
lengthymagnitude = 1)


& Xi K, K7
. .
., magnitude datapoints

01


Eigenvectors -
X values A =
- 2 -
3 o
m
is not invertible


Val : Ax =
XX ,
where X +0 and XER Ax XX XIx = = >
-
Ax XIX -
= (A XI)x - = 0


- -
- x I

So det1A-XI) + det det det (ad-b)
eigenvalue eigenvector 0 -2
=
- =
=




= x2 + 3x + 2

= (x+ 2)(x + 1) 0+ x 2, x 1

:
= = =




(t) (2)
Vec + x X 2x 3x2
x23any values work so
=
- - - = -

,

-

2x1 =
2X2
Xi = - X2
If you know something is an eigenvector for a given matrix/linear transformation, you know that, that linear transformation will map that
eigenvector onto a different vector which maintains the same ratios (ex. ratios of x1(length) to x2(weight))


Lagrange multipliers = Ul
uSu = (u + u1)
H = 42
*
Direction + uTSu + X(1 uπy)
is important not
magnitude ; llull 1 + Max (uTSu) S . 4 +u 1
t -
= =
, .




11411

Taking the derivative of ↓ get Su 14 uSu XnTy
=
We = + =


maximise
So take all S to maximise .
eigenvalues of and
find biggest one X
$11.37
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Alysa3 Universiteit Utrecht
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
17
Miembro desde
2 año
Número de seguidores
5
Documentos
6
Última venta
2 meses hace

3.0

1 reseñas

5
0
4
0
3
1
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes