100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

First Course in Abstract Algebra A, 8th Edition by John B. Fraleigh, Verified Chapters 1 - 56, Complete Newest Version

Puntuación
-
Vendido
-
Páginas
13
Grado
A+
Subido en
07-09-2024
Escrito en
2024/2025

First Course in Abstract Algebra A, 8th Edition by John B. Fraleigh, Verified Chapters 1 - 56, Complete Newest Version

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Grado

Información del documento

Subido en
7 de septiembre de 2024
Número de páginas
13
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Solution Manual for First Course in Abstract Algebra A, 8th
Edition by John B. Fraleigh, Verified Chapters 1 - 56, Complete
Newest Version
The set {0, ±1, ±2,...} of ________ will be denoted by Z. - ANSWER:Integers

We will use N for the set {0,1,2,...} of _______ ________. - ANSWER:Natural numbers

An integer a is called a ________ of an integer b if a=bq for some integer q. In this
case we also say that b is a _______ of a, and we will use the notation b|a.

b is a ______ of a.
a is _________ of b. - ANSWER:Multiple
Divisor
Factor
Divisible

Every nonempty set of natural numbers contains a smallest element - ANSWER:Well-
Ordering Principle

For any integers a and b, with b>0, there exist unique integers q (quotient) and r
(remainder) such that a = bq+r, with 0≤r<b - ANSWER:Division algorithm

A set of multiples aZ has the property that the sum or difference of. two integers in
the set is again in the set, since aq₁±aq₂ = a(q₁±q₂). We say that the set aZ is ______
_____ ________ ___ ___________. - ANSWER:Closed under addition and subtraction

Let a and b be integers, not both zero. A positive integer d is called the ________
______ _______ of a and b if
(i) d is a divisor of a and b, and
(ii) any divisor of both a and b is also a divisor of d
denoted gcd(a,b) or (a,b). - ANSWER:Greatest common divisor

If a and b are integers, then we will refer to any integer of the form ma+nb, where
n∈Z, as a ______ ___________ of a and b. - ANSWER:Linear combination

Given integers a>b>0, the _________ _________ uses the division algorithm
repeatedly to obtain

a=bq₁+r₁ with 0≤r₁<b
b=r₁q₂+r₂ with 0≤r₂<r₁
r₁q₃+r₃ with 0≤r₃<r₂
etc. - ANSWER:Euclidean algorithm

, A number n is called _______ if it is equal to the sum of its proper positive divisor
(those divisors different from n). - ANSWER:Perfect

The nonzero integers a and b are said to be __________ _____ if (a,b)=1 -
ANSWER:Relatively prime

An integer p>1 is called a _____ ______ if its only divisors are ±1 and ±p.
An integer a>1 is called _________ if it is not prime. - ANSWER:Prime number
Composite

The _____ __ ____________ is an ancient algorithm for finding all prime numbers up
to any given limit. - ANSWER:Sieve of Eratosthenes

Any integer a>1 can be factored uniquely as a product of prime numbers in the form
a = P₁¹P₂²...Pₙⁿ where P₁<P₂...<Pₙ and the exponents α₁,α₂,...,αₙ are all positive. -
ANSWER:Fundamental Theorem of Arithmetic

There exist infinitely many prime numbers - ANSWER:Euclid Theorem

A positive integer m is called the _____ ______ ________ of the nonzero integers a
and b if
(i) m is a multiple of both a and b, and
(ii) any multiple of both a and b is also a multiple of m
We will use the notation lcm[a,b] or [a,b] for the _____ ______ _______ of a and b -
ANSWER:Least common multiple

A positive integer a is called a ______ if a=n² for some n∈Z. - ANSWER:Square

A positive integer is called ______-____ if it is a product of distinct primes. -
ANSWER:Square-free

If a,b,c are positive integers such that a²+b²=c², then (a,b,c) is called a ___________
_____. - ANSWER:Pythagorean triple

Let n be a positive integer. Integers a and b are said to be _________ ______ n if
they have the same remainder when divided by n.. This is denoted by writing
a≡b(mod n). - ANSWER:Congruent modulo

When working with congruence modulo n, the integer n is called _______. -
ANSWER:Modulus

Let n and m be positive integers, with (n,m)=1. Then the system of congruences
x≡a(mod n) x≡b(mod n)
has a solution. Moreover, any two solutions are congruent modulo mn. -
ANSWER:Chinese Remainder Theorem
$17.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
kushboopatel6867
5.0
(1)

Conoce al vendedor

Seller avatar
kushboopatel6867 Chamberlain College Nursing
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
3
Miembro desde
1 año
Número de seguidores
0
Documentos
1282
Última venta
2 meses hace
EXCELLENT HOMEWORK HELP AND TUTORING ,

EXCELLENT HOMEWORK HELP AND TUTORING ,ALL KIND OF QUIZ AND EXAMS WITH GUARANTEE OF A EXCELLENT HOMEWORK HELP AND TUTORING ,ALL KIND OF QUIZ AND EXAMS WITH GUARANTEE OF A Am an expert on major courses especially; psychology,Nursing, Human resource Management and Mathemtics Assisting students with quality work is my first priority. I ensure scholarly standards in my documents and that's why i'm one of the BEST GOLD RATED TUTORS in STUVIA. I assure a GOOD GRADE if you will use my work.

Lee mas Leer menos
5.0

1 reseñas

5
1
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes