100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

BSNS112 - Final Exam prep Exam Prep Questions And Answers ()

Puntuación
-
Vendido
-
Páginas
44
Grado
A+
Subido en
25-08-2024
Escrito en
2024/2025

BSNS112 - Final Exam prep Exam Prep Questions And Answers ()

Institución
BSNS112
Grado
BSNS112











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
BSNS112
Grado
BSNS112

Información del documento

Subido en
25 de agosto de 2024
Número de páginas
44
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

BSNS112 - Final Exam prep Exam Prep Questions And Answers (202472025)
What does quantitative data use? - ✔✔means


What is discrete data? - ✔✔Quantitative. Measured in specific values


What is continuous data? - ✔✔Quantitative. Measure in infinite values


What does qualitative data use? - ✔✔Proportions


What is ordinal data? - ✔✔Qualitative. Conveys a ranking


What is nominal data? - ✔✔Qualitative. Uses labels (no ranking)


confidence interval for one proportion - ✔✔q-hat = (1-p-hat)


hypothesis test for one proportion - ✔✔


Confidence interval for the difference in two proportions - ✔✔


sample size for estimating mean - ✔✔E = B (on formula sheet)


standard normal transformation formula - ✔✔calculating when Z is unknown (or x or sd but
most likely z)


right skewed distribution - ✔✔mean > median, also known as a positive skew


left skewed distribution - ✔✔mean < median, also known as a negative skew

,90% confidence interval - ✔✔1.645


95% confidence interval - ✔✔1.96


99% confidence interval - ✔✔2.575


90% confidence interval of the proportion of all market goers who are students would be: -
✔✔Narrower than the 95% confidence interval


When do you reject the null hypothesis? - ✔✔When the p value is less than 0.05 (p-value low,
reject that SHO!!!) 5% level of significance


What does the t-value represent? - ✔✔the sample means is (x) amount standard errors more/less
(depending if it is positive or minus) than the hypothesised mean


What is a type one error? - ✔✔Rejecting the null hypothesis when it is true


What is a type two error? - ✔✔failing to reject a false null hypothesis


p-value - ✔✔-is calculated based on the assumption that the null hypothesis is true
-the p-value is sample specific, meaning if you collected another random sample of the same size
from the same population, the p-value would likely be different.


Stratifed random sample - ✔✔For the same sample size, parameter estimates are usually more
accurate than for simple random sampling


Categorical variables (qualitative variables) - ✔✔those that divide subjects into groups, but do
not allow any sort of mathematical operations to be performed on the data


Numerical Variables (Quantitative) - ✔✔numbers

,Ordinal - ✔✔rank, order


nominal variables - ✔✔variables measured in monetary units....currency


Data quality and feature selection - ✔✔


input variable - ✔✔xi
- explanatory variable (independent) variables these are also called features


output variable - ✔✔Yk
- the response (dependent) variables


issues with data - ✔✔- data you tend to play with (number you're given in a sample)
- features and examples (more of one less of the other)
- large number of example of features
- very large number of examples


data quality - ✔✔- most often comes as a table - but this isn't the case (in the real world)
- data can have holes and look and it won't look clean (complex format)


poor data quality - ✔✔-missing column variables
-missing values
- errors in the data entry
- mixed numeric and test
- inconsistent values


Transformations (scaling) - ✔✔- reduce the scale (range) of the data
- transform the mean, 0, and SD, 1

, Log transform - ✔✔- some data is highly skewed and is better if you change it to look more
normally distributed
- square root helps


Feature selection reduction - ✔✔worst case, more explanatory variables than examples, so a
multiple linear regression cannot be constructed
- simple method
1. select the feature F that is most correlated with the response
2. remove all features that are highly correlated w/ F (above some given time hold)
3. repeat steps 1 and 2 until number of features is manageable


Correlation - ✔✔Correlation is NOT causation
Cor X,Y/óxóy


stepwise multiple regression model - ✔✔mulitiple factors the impact the regression (mulitiple
dimension model)


backward multiple regression model - ✔✔- build regression
- price worst variable
- take variable out confirmed adjusted r-squared hasn't gone down (quantity and fit of the model)


Principal component analysis - ✔✔- very common method for dimensionaity reduction (i.e.
reduce the number of features)
- rotates the data


map more complicated equations though transforming the data
- non-linear models - ✔✔straight line sometimes not best fit
- take the x-value and make new deviratives


Y-hat = Bo+ B1 X + B2X^2 + B3X^3
$10.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
manassehtaliban95 Glendale Community College
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
17
Miembro desde
1 año
Número de seguidores
0
Documentos
9065
Última venta
1 semana hace

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes