100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Analysis of Categorical Data with R 1st Edition By Christopher R. Bilder; Thomas M. Loughin 9781439855676 ALL Chapters .

Puntuación
-
Vendido
-
Páginas
7
Grado
A+
Subido en
23-08-2024
Escrito en
2024/2025

Analysis of Categorical Data with R 1st Edition By Christopher R. Bilder; Thomas M. Loughin 9781439855676 ALL Chapters .

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Grado

Información del documento

Subido en
23 de agosto de 2024
Número de páginas
7
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Solutions Manual For Analysis of Categorical Data with R 1st
Edition By Christopher R. Bilder; Thomas M. Loughin
9781439855676 ALL Chapters .

What are the key reasons to develop a model for your data analysis? Select three answers.
A. Determine the relationships between variables.
B. Understand how the data were generated.
C. Identify any special structures that may exist in the data.
D. Determine the accuracy of your data. - ANSWER: A. Determine the relationships between variables.
B. Understand how the data were generated.
C. Identify any special structures that may exist in the data.

There are four assumptions associated with a linear regression model. What is the definition of the
assumption homoscedasticity?
A. The relationship between X and the mean of Y is linear.
B. Observations are independent of each other.
C. For any fixed value of X, Y is normally distributed.
D. The variance of residual is the same for any value of X. - ANSWER: D. The variance of residual is the
same for any value of X.

What step must you take before you can obtain a prediction based on a fitted simple linear regression
model?
A. Use or create a data frame containing never seen data.
B. Do nothing. Once you have a fitted simple linear regression model, you have all you need to make
predictions.
C. Use or create a data frame containing known target variables.
D. Use or create a data frame containing known predictor variables. - ANSWER: A. Use or create a
data frame containing never seen data.

Assume you have a dataset called "new_dataset", two predictor variables called X and Y, and a target
variable called Z, and you want to fit a multiple linear regression model. Which command should you
use?
A. linear_model <- lm(Z ~ X + Y, data = new_dataset)
B. linear_model <- lm(Z ~ X ~ Y, data = new_dataset)
C. linear_model <- lm(X + Y + Z, data = new_dataset)
D. linear_model <- lm(X + Y ~ Z, data = new_dataset) - ANSWER: A. linear_model <- lm(Z ~ X + Y, data
= new_dataset)

Which plot types help you validate assumptions about linearity? Select two answers.
A. Scale-location plot
B. Residual plot
C. Regression plot
D. Q-Q plot - ANSWER: B. Residual plot
C. Regression plot

True or False: When using the poly() function to fit a polynomial regression model, you must specify
"raw = FALSE" so you can get the expected coefficients.
A. True.
B. False. - ANSWER: B. False.

Which performance metric for regression is the mean of the square of the residuals (error)?
A. Mean squared error (MSE)
B. Mean absolute error (MAE)
C. Root mean squared error (RMSE)

, D. R-squared (R2) - ANSWER: A. Mean squared error (MSE)

When comparing the MSE of different models, do you want the highest or lowest value of MSE?
A. Lowest value of MSE
B. Highest value of MSE - ANSWER: A. Lowest value of MSE

In model development, you can develop more accurate models when you have which of the
following?
A. Relevant data.
B. Larger quantities of data.
C. Fewer independent variables.
D. More dependent variables. - ANSWER: A. Relevant data.

Assume you have a dataset called "new_dataset", a predictor variable called X, and a target called Y,
and you want to fit a simple linear regression model. Which command should you use?
A. linear_model <- lm(X ~ Y, data = new_dataset)
B. linear_model <- predict(X ~ Y, data = new_dataset)
C. linear_model <- predict(Y ~ Z, data = new_dataset)
D. linear_model <- lm(Y ~ X, data = new_dataset) - ANSWER: D. linear_model <- lm(Y ~ X, data =
new_dataset)

When using the predict() function in R, what is the default confidence level?
A. 90%
B. 95%
C. 100%
D. 85% - ANSWER: B. 95%

Which plot type helps you validate assumptions about normality?
A. Scale-location plot
B. Residual plot
C. Q-Q plot
D. Regression plots - ANSWER: C. Q-Q plot

A third order polynomial regression model is described as which of the following?
A. Squared, meaning that the predictor variable in the model is squared.
B. Quadratic, meaning that the predictor variable in the model is squared.
C. Cubic, meaning that the predictor variable in the model is cubed.
D. Simple linear regression. - ANSWER: C. Cubic, meaning that the predictor variable in the model is
cubed.

How should you interpret an R-squared result of 0.89?
A. 89% of the response variable variation is explained by a polynomial model.
B. 89% of the response variable variation is explained by a linear model.
C. The X variable causes the Y variable to positively change 89% of the time.
D. There is a strong negative correlation between the variables. - ANSWER: B. 89% of the response
variable variation is explained by a linear model.

When comparing linear regression models, when will the mean squared error (MSE) be smaller?
A. When using a multiple linear regression (MLR) model.
B. When using a polynomial regression model.
C. This depends on your data. The model that fits the data better has the smaller MSE.
D. When using a simple linear regression (SLR) model. - ANSWER: C. This depends on your data. The
model that fits the data better has the smaller MSE.

When evaluating models, what is the term used to describe a situation where a model fits the training
data very well but performs poorly when predicting new data?
A. Overfit
$17.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
phinta004 Chamberlain College Nursing
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
17
Miembro desde
1 año
Número de seguidores
2
Documentos
982
Última venta
3 meses hace
EXCELLENT HOMEWORK

EXCELLENT HOMEWORK HELP AND TUTORING ,ALL KIND OF QUIZ AND EXAMS WITH GUARANTEE OF A EXCELLENT HOMEWORK HELP AND TUTORING ,ALL KIND OF QUIZ AND EXAMS WITH GUARANTEE OF A Am an expert on major courses especially; psychology,Nursing, Human resource Management and Mathemtics Assisting students with quality work is my first priority. I ensure scholarly standards in my documents and that's why i'm one of the BEST GOLD RATED TUTORS in STUVIA. I assure a GOOD GRADE if you will use my work.

Lee mas Leer menos
4.7

179 reseñas

5
134
4
38
3
6
2
1
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes