SAMENVATTING MEDICAL STRUCTURAL BIOLOGY
Hoorcollege 1 Medical Structural Biology – meneer Guskov – 23.9.2019
Complexiteit van het leven:
- Cel moet nutriënten importeren om in leven te blijven en om processen uit te voeren in de
cel
- Input van energie om de cel bijeen te houden
- Structuur bepaalt de functie van de cel
Structuren van polymeren → zijn lineair:
- A: DNA
- B: RNA
- C: eiwit
- D: glycanen → alleen deze zijn branched
Intermoleculaire energie:
- Alle moleculen/atomen interacteren met elkaar
- Bepaalde interacties promoten de aantrekkingskracht
van moleculen
- Bij een grote afstand tussen de 2 moleculen,
interacteren ze niet met elkaar en de energie is gelijk
aan 0
- Als de moleculen dichter bij elkaar komen, wordt de
energie lager op het moment dat ze elkaar aantrekken
totdat het heel laag is bij een optimale interactie
afstand → atomen in de 2 moleculen gaan botsen bij
een kortere afstand en dan gaan de energie weer
scherp omhoog
Pairwise interacties tussen atomen in 2 moleculen:
- Energie van de interactie tussen de 2 moleculen kan worden berekend
door het optellen van de interactie-energieën tussen de pair-wise
combinaties van atomen in de 2 moleculen
- Niet-covalente interacties zijn interacties tussen atomen die niet
covalent gebonden zijn aan elkaar → kunnen attractief of repulsief zijn
en ze ontstaan door interacties tussen korte of stabiele ladingen op
atomen
• Zijn gemakkelijk te vormen en te breken door thermale
fluctuaties
1
, • Fenylalanine: covalente interacties → water
moleculen bumpt op het aminozuur wat zorgt voor
een conformationele verandering van het aminozuur
→ geen covalente verbindingen worden gebroken
(A)
➢ Niet covalente interactie: 2 aminozuren in
een eiwit hebben verschillende ladingen en
trekken elkaar elektrostatisch aan → bumpen
van water moleculen kunnen non-covalente
bindingen breken bij kamertemperatuur
- Dipolen: situatie wanneer 2 ladingen gescheiden zijn in de
ruimte
• Gebeurt wanneer je een lading naast je atoom hebt →
lading zorgt voor het bewegen van een elektronenwolk
• Neutrale atomen kunnen dipolen induceren: elektronenwolken van de 2 atomen
worden gepolariseerd → elektronen worden geredistributeerd zodat het een
dipoolmoment creëert in het atoom → dipolen trekken elkaar aan maar de
ladingpolarisatie is kortstondig
Van de waals interacties:
- Als atomen ver weg van elkaar zijn dan is er geen interactie
tussen de 2 atomen → lage energie
- Wanneer de atomen dicht bij elkaar zijn dan is er een hoge
energie en kunnen er van der waals interacties ontstaan
- Als atomen dichter bij elkaar komen → gaan bumpen op elkaar
→ veel energie
- Thermale energie: energie die komt van atomen die tegen
elkaar bumpen
- Stabilisatie-energie is heel laag om een interactie tot stand te
laten komen
- Energie is het laagst wanneer de 2 atomen worden gescheiden
door de som van hun van der waals radii
- Horizontale blauwe lijn is de thermale energie bij
kamertemperatuur = energie die gemakkelijk wordt
uitgewisseld tussen moleculen tijdens random bumping events → thermale energie is groter
dan de stabilisatie die nodig is voor de vdwaals interacties → interacties tussen atomen kan
makkelijk worden verstoord door bumping events
2
, - Van de waals radius is een meting voor de grootte van een atoom → energie
door van der waals aantrekking tussen 2 atomen is optimaal wanneer ze
gescheiden zijn van elkaar door de som van hun van der waals radii → als ze
dichter bij elkaar komen dan wordt de energie hoger
Elektronegativiteit: vermogen van atomen om elektronen aan te trekken wanneer het
in een covalente binding zit → grotere elektronegativiteit betekent een grotere neiging
tot het aantrekken van elektronen
- Zuurstof heeft altijd een partiële negatieve lading
- En waterstof heeft altijd een partiële positieve lading
Gekko’s gebruiken van der waals interacties → doen dat door haarachtige
structuren op de poten → structuren hebben individuele spatula die interacties
maken met het oppervlak
Ladinginteracties:
- Bijvoorbeeld door arginine (positief geladen) en glutamaat
(negatief geladen carboxylgroep) → interactie is best sterk als je
kijkt naar de Wet van Coulomb = zoutbrug (salt bridge)
- Is 25 keer sterker dan een van der waals verbinding
Effect van de omgeving:
- In vacuum: hele hoge energie tussen ladingen
- In water is de energie van ladingen veel lager
- Wanneer de ladingen in een eiwit interior plaatsen → hogere
energie dan als je het op het oppervlakte van het eiwit plaatst (dit
is wel stabieler dan in het molecuul)
3
, Dipoolmomenten van waterstofbindingen:
- Vormen van waterstofverbindingen
door een donor en een acceptor
(positief en negatief geladen)
- Dipolen zijn richting de positieve pool
(rode pijlen)
- Zuurstof is negatief en waterstof is
positief → kunnen interacteren met
elkaar waardoor er een waterstofverbinding wordt gevormd
- Waterstofverbindingen zijn interacties tussen polaire groepen (dipolen) waarbij een
waterstof atoom met een partiële positieve lading dichtbij een atoom met een partiële
negatieve lading wordt geplaatst (acceptor) → partiële positieve lading op het
waterstofatoom is een gevolg van een gepolariseerde covalente binding met een meer
elektronegatief atoom = donor
Waterstofverbindingen:
- Qua energie zit het tussen van der waals interacties en
ionladingen in
Watermoleculen verzwakken de effectieve kracht tussen
waterstofverbindingen:
- Water kan ook waterstofbindingen vormen dus is er
competitie tussen eiwitmoleculen en watermoleculen
- Netto dipoolmoment wanneer een negatieve lading tussen 2
positieve ladingen in zit → energie komt middenin te zitten
- Afstand tussen waterstofbindingen is 1,6-1,7
Structuur van een nucleotide:
- Nucleotide – nucleoside + fosfaat
- Fosfaat – nucleoside = suiker + base
- C 5’ zit aan de fosfaat en er is een glycosidische binding bij C1
van suiker en base
- ATP = energiebron → knippen van fosfaat
- Fosfaat komt aan de OH van de suiker (hydroxylgroep) en base
zit aan de hydroxylgroep van C1 van de suiker
- Trifosfaat = ATP
- Pyrimidine: C, T en U basen
4
Hoorcollege 1 Medical Structural Biology – meneer Guskov – 23.9.2019
Complexiteit van het leven:
- Cel moet nutriënten importeren om in leven te blijven en om processen uit te voeren in de
cel
- Input van energie om de cel bijeen te houden
- Structuur bepaalt de functie van de cel
Structuren van polymeren → zijn lineair:
- A: DNA
- B: RNA
- C: eiwit
- D: glycanen → alleen deze zijn branched
Intermoleculaire energie:
- Alle moleculen/atomen interacteren met elkaar
- Bepaalde interacties promoten de aantrekkingskracht
van moleculen
- Bij een grote afstand tussen de 2 moleculen,
interacteren ze niet met elkaar en de energie is gelijk
aan 0
- Als de moleculen dichter bij elkaar komen, wordt de
energie lager op het moment dat ze elkaar aantrekken
totdat het heel laag is bij een optimale interactie
afstand → atomen in de 2 moleculen gaan botsen bij
een kortere afstand en dan gaan de energie weer
scherp omhoog
Pairwise interacties tussen atomen in 2 moleculen:
- Energie van de interactie tussen de 2 moleculen kan worden berekend
door het optellen van de interactie-energieën tussen de pair-wise
combinaties van atomen in de 2 moleculen
- Niet-covalente interacties zijn interacties tussen atomen die niet
covalent gebonden zijn aan elkaar → kunnen attractief of repulsief zijn
en ze ontstaan door interacties tussen korte of stabiele ladingen op
atomen
• Zijn gemakkelijk te vormen en te breken door thermale
fluctuaties
1
, • Fenylalanine: covalente interacties → water
moleculen bumpt op het aminozuur wat zorgt voor
een conformationele verandering van het aminozuur
→ geen covalente verbindingen worden gebroken
(A)
➢ Niet covalente interactie: 2 aminozuren in
een eiwit hebben verschillende ladingen en
trekken elkaar elektrostatisch aan → bumpen
van water moleculen kunnen non-covalente
bindingen breken bij kamertemperatuur
- Dipolen: situatie wanneer 2 ladingen gescheiden zijn in de
ruimte
• Gebeurt wanneer je een lading naast je atoom hebt →
lading zorgt voor het bewegen van een elektronenwolk
• Neutrale atomen kunnen dipolen induceren: elektronenwolken van de 2 atomen
worden gepolariseerd → elektronen worden geredistributeerd zodat het een
dipoolmoment creëert in het atoom → dipolen trekken elkaar aan maar de
ladingpolarisatie is kortstondig
Van de waals interacties:
- Als atomen ver weg van elkaar zijn dan is er geen interactie
tussen de 2 atomen → lage energie
- Wanneer de atomen dicht bij elkaar zijn dan is er een hoge
energie en kunnen er van der waals interacties ontstaan
- Als atomen dichter bij elkaar komen → gaan bumpen op elkaar
→ veel energie
- Thermale energie: energie die komt van atomen die tegen
elkaar bumpen
- Stabilisatie-energie is heel laag om een interactie tot stand te
laten komen
- Energie is het laagst wanneer de 2 atomen worden gescheiden
door de som van hun van der waals radii
- Horizontale blauwe lijn is de thermale energie bij
kamertemperatuur = energie die gemakkelijk wordt
uitgewisseld tussen moleculen tijdens random bumping events → thermale energie is groter
dan de stabilisatie die nodig is voor de vdwaals interacties → interacties tussen atomen kan
makkelijk worden verstoord door bumping events
2
, - Van de waals radius is een meting voor de grootte van een atoom → energie
door van der waals aantrekking tussen 2 atomen is optimaal wanneer ze
gescheiden zijn van elkaar door de som van hun van der waals radii → als ze
dichter bij elkaar komen dan wordt de energie hoger
Elektronegativiteit: vermogen van atomen om elektronen aan te trekken wanneer het
in een covalente binding zit → grotere elektronegativiteit betekent een grotere neiging
tot het aantrekken van elektronen
- Zuurstof heeft altijd een partiële negatieve lading
- En waterstof heeft altijd een partiële positieve lading
Gekko’s gebruiken van der waals interacties → doen dat door haarachtige
structuren op de poten → structuren hebben individuele spatula die interacties
maken met het oppervlak
Ladinginteracties:
- Bijvoorbeeld door arginine (positief geladen) en glutamaat
(negatief geladen carboxylgroep) → interactie is best sterk als je
kijkt naar de Wet van Coulomb = zoutbrug (salt bridge)
- Is 25 keer sterker dan een van der waals verbinding
Effect van de omgeving:
- In vacuum: hele hoge energie tussen ladingen
- In water is de energie van ladingen veel lager
- Wanneer de ladingen in een eiwit interior plaatsen → hogere
energie dan als je het op het oppervlakte van het eiwit plaatst (dit
is wel stabieler dan in het molecuul)
3
, Dipoolmomenten van waterstofbindingen:
- Vormen van waterstofverbindingen
door een donor en een acceptor
(positief en negatief geladen)
- Dipolen zijn richting de positieve pool
(rode pijlen)
- Zuurstof is negatief en waterstof is
positief → kunnen interacteren met
elkaar waardoor er een waterstofverbinding wordt gevormd
- Waterstofverbindingen zijn interacties tussen polaire groepen (dipolen) waarbij een
waterstof atoom met een partiële positieve lading dichtbij een atoom met een partiële
negatieve lading wordt geplaatst (acceptor) → partiële positieve lading op het
waterstofatoom is een gevolg van een gepolariseerde covalente binding met een meer
elektronegatief atoom = donor
Waterstofverbindingen:
- Qua energie zit het tussen van der waals interacties en
ionladingen in
Watermoleculen verzwakken de effectieve kracht tussen
waterstofverbindingen:
- Water kan ook waterstofbindingen vormen dus is er
competitie tussen eiwitmoleculen en watermoleculen
- Netto dipoolmoment wanneer een negatieve lading tussen 2
positieve ladingen in zit → energie komt middenin te zitten
- Afstand tussen waterstofbindingen is 1,6-1,7
Structuur van een nucleotide:
- Nucleotide – nucleoside + fosfaat
- Fosfaat – nucleoside = suiker + base
- C 5’ zit aan de fosfaat en er is een glycosidische binding bij C1
van suiker en base
- ATP = energiebron → knippen van fosfaat
- Fosfaat komt aan de OH van de suiker (hydroxylgroep) en base
zit aan de hydroxylgroep van C1 van de suiker
- Trifosfaat = ATP
- Pyrimidine: C, T en U basen
4