100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Otro

STA3701 Assignment 3 answers 2024

Puntuación
-
Vendido
-
Páginas
16
Subido en
29-07-2024
Escrito en
2023/2024

Guaranteed success with comprehensive answers and guidance. Avoid copying and engage with the solutions.

Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
29 de julio de 2024
Número de páginas
16
Escrito en
2023/2024
Tipo
Otro
Personaje
Desconocido

Temas

Vista previa del contenido

STA3701
Machuene Elias Mabetoa

2024-07-19
# Load necessary packages
library(faraway)

## Warning: package 'faraway' was built under R version 4.3.3

library(car) # For VIF calculation

## Warning: package 'car' was built under R version 4.3.2

## Loading required package: carData

## Warning: package 'carData' was built under R version 4.3.2

##
## Attaching package: 'car'

## The following objects are masked from 'package:faraway':
##
## logit, vif

library(MASS) # For Box-Cox transformation
library(ggplot2) # For plotting

# Load the dataset
data(fat)

###1.1 Purpose of the Study The purpose of this study is to determine the relationship
between body fat percentage (measured by the Brozek formula) and various body
measurements, age, height, and weight among a sample of 252 men.

1.2 Percentage of Variation Explained
• The R-squared value is approximately 0.970, which means that about 97% of the
variation in body fat percentage (Brozek) is explained by the predictors in the
model.
# Fit the initial model
model <- lm(brozek ~ . - siri - density, data = fat)
summary_model <- summary(model)
r_squared <- summary_model$r.squared

# Output R-squared
print(r_squared)

## [1] 0.9700398

,1.3
Based on the purpose of the study, we are examining the relationship between body fat
percentage and various predictors: body measurements, age, height, and weight. To
determine if there are signs of multicollinearity, we would look for:
High Correlations Among Predictors: If body measurements (e.g., waist circumference, hip
circumference), age, height, and weight are highly correlated with each other, it might
indicate multicollinearity. For example, height and weight often have a high correlation,
which could lead to multicollinearity.
Variance Inflation Factors (VIFs): If we have computed VIFs for our predictors, values
greater than 10 (or sometimes 5, depending on the threshold used) would suggest
multicollinearity.
Condition Index: A high condition index (e.g., above 30) indicates multicollinearity issues.
Without specific data on the correlations or VIFs, it’s hard to definitively say if
multicollinearity is present. However, if we observe that some of our predictor variables
are highly correlated with each other, or if VIFs and condition indices indicate high
multicollinearity, then your model might have multicollinearity issues.

1.4 Multicollinearity Diagnostics
Multicollinearity in the Model:
To detect multicollinearity, we will use several diagnostics: condition numbers, scatterplot
and pairwise correlation matrices, and variance inflation factors (VIF).
# (a) Condition Numbers
condition_numbers <- kappa(model, exact = TRUE)
print(condition_numbers)

## [1] 20167.94

Condition numbers help to determine the degree of multicollinearity in the model. A
condition number greater than 30 suggests moderate to severe multicollinearity.
-A condition number of 20167.94 indicates severe multicollinearity in the model.
# (b) Scatterplot and Pairwise Correlation Matrices
# Adjust margins and plot the scatterplot matrix
op <- par(mar = c(1, 1, 1, 1))
pairs(fat[ , !(names(fat) %in% c("brozek", "siri", "density"))])

, par(op) # Reset to original parameters

The scatterplot matrix visualizes pairwise relationships between each pair of variables in
the dataset. Each cell in the matrix contains a scatterplot of two variables, with the
variables’ names labeled along the diagonal. The plots can help identify patterns,
relationships, and potential multicollinearity among the variables.
Here is a brief interpretation of the scatterplot matrix:
Diagonal Elements: Each diagonal element represents the distribution of a single variable,
often shown as a histogram or density plot. These plots give a sense of the univariate
distribution of each variable.
Off-Diagonal Elements: These scatterplots show the relationship between pairs of
variables:
Linear Relationships: Variables with linear relationships will show a clear, straight pattern
in their corresponding scatterplot. For example, the scatterplots involving weight, adipos,
chest, abdom, and hip show strong linear relationships, indicating potential
multicollinearity. Clustered Patterns: If points are clustered tightly around a line, it
indicates a strong relationship. Loose and spread-out points suggest weaker relationships.
Outliers: Points that fall far from the main cloud of data can indicate outliers, which might
need special consideration in the analysis. Identifying Multicollinearity:
High Correlations: Pairs of variables with high correlations (visible as tightly clustered
points along a line) suggest multicollinearity. For example, the scatterplots for weight
$21.76
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Mmatshwene05 University of South Africa (Unisa)
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
57
Miembro desde
4 año
Número de seguidores
47
Documentos
11
Última venta
8 meses hace
StudWithU

The help you need is the achievement you are working hard for.

3.9

10 reseñas

5
6
4
1
3
1
2
0
1
2

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes