100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary lectures Correlational research methods

Puntuación
5.0
(1)
Vendido
8
Páginas
24
Subido en
27-09-2019
Escrito en
2018/2019

Summary lectures correlational research methods

Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
27 de septiembre de 2019
Número de páginas
24
Escrito en
2018/2019
Tipo
Resumen

Temas

Vista previa del contenido

Correlational Research Methods

Inhoudsopgave
Correlational Research Methods ...................................................................................................................... 1
Lecture 1 – 28/08/2018 ...................................................................................................................................... 3
Null hypothesis significance testing ............................................................................................................... 3
Pearson’s Correlation Coefficient ................................................................................................................... 4
Inferential statistics ........................................................................................................................................ 4
P-Value ........................................................................................................................................................... 4
Lecture 2 – 03/09/2018 ...................................................................................................................................... 4
Inferential statistics ........................................................................................................................................ 4
Confidence interval for r ................................................................................................................................ 5
Assumptions for r ........................................................................................................................................... 5
Power ............................................................................................................................................................. 5
Squared Correlation: r2XY ................................................................................................................................ 5
“Explanations” for the relationship between x and y: ................................................................................... 6
Simple linear regression analysis .................................................................................................................... 6
The linear simple regression model ............................................................................................................... 6
Simple regression analysis .............................................................................................................................. 6
Lecture 3 – 10/09/2018 ...................................................................................................................................... 7
Regression analysis ......................................................................................................................................... 7
Two ways to interpret Y’ ................................................................................................................................ 7
Interpretation regression coefficient b^1 ....................................................................................................... 7
Standardized regression coefficient () ......................................................................................................... 7
Interpretation unstandardized regression coefficient b^1: ........................................................................... 7
Interpretation standardized regression coefficient ^1:................................................................................ 7
Use b ............................................................................................................................................................... 7
Use  .............................................................................................................................................................. 7
Sum of squares ............................................................................................................................................... 8
Lecture 4 – 17/09/2018 ...................................................................................................................................... 8
Multiple regression ........................................................................................................................................ 8
Multiple Regression analysis .......................................................................................................................... 8
What do we need to know? ........................................................................................................................... 8
The Linear Multiple Regression model ........................................................................................................... 8
Partial slopes .................................................................................................................................................. 9
Main questions Multiple Regression analysis ................................................................................................ 9
Lecture 5 – 24/09/2018 ...................................................................................................................................... 9
Proportion explained variance ....................................................................................................................... 9
F-Test for the entire model ............................................................................................................................ 9
3. How well does every predictor explain/predict separately? .................................................................... 10
What happens with the explained variance if I remove a predictor? .......................................................... 10
.......................................................................................................................................................................... 11
4. Which predictor is the most important one? ........................................................................................... 12
Lecture 6 – 1/10/2018 ...................................................................................................................................... 12
Hypothesis Testing versus Estimating .......................................................................................................... 12
Multiple Linear Regression Analysis: Starting Point ..................................................................................... 12
Using Multiple regression for ....................................................................................................................... 13
Uniquely explained variance ........................................................................................................................ 13
Lecture 7 – 08/10/2018 .................................................................................................................................... 14


1

, Model with k predictors: Standard Regression Analysis .............................................................................. 14
Adjusted R-square ........................................................................................................................................ 14
Controlling for confounders ......................................................................................................................... 14
Nested models.............................................................................................................................................. 14
What do we use nested model for? ............................................................................................................. 14
Test statistic F ............................................................................................................................................... 14
Hierarchical Regression analysis................................................................................................................... 15
Lecture 8 – 23/10/2018 .................................................................................................................................... 15
Multiple Regression with Dummy variables ................................................................................................. 15
Dummies ...................................................................................................................................................... 15
Categorical values......................................................................................................................................... 15
R-square ....................................................................................................................................................... 16
Dummy Coding ............................................................................................................................................. 16
Lecture 9 – 30/10/2018 .................................................................................................................................... 16
Interaction .................................................................................................................................................... 16
Conceptual Model with an Interaction Effect .............................................................................................. 16
Interpreting main effects in the presence of interaction effects ................................................................. 17
Simple effects ............................................................................................................................................... 17
Lecture 10 – 6/11/2018 .................................................................................................................................... 17
Moderator versus Mediator and Common Cause ........................................................................................ 18
MR with Interaction between Quantitative Variables ................................................................................. 18
Interpretation of centered scores ................................................................................................................ 18
Interpreting the significance of interactions: “Probing” .............................................................................. 18
Multicollinearity ........................................................................................................................................... 18
Variance Inflation Factor (VIF) ...................................................................................................................... 19
Lecture 11 – 13/11/2018 .................................................................................................................................. 20
Overview of statistical techniques ............................................................................................................... 20
Binary Logistic Regression ............................................................................................................................ 20
Determine Logistic Function in Empirical Data ............................................................................................ 21
From probabilities to Odds ........................................................................................................................... 21
From Odds to Logit ....................................................................................................................................... 22
The corresponding function for the Logit..................................................................................................... 22
Lecture 12 – 20/11/2018 .................................................................................................................................. 22
Significance testing ....................................................................................................................................... 22
Pseudo R-square Measures .......................................................................................................................... 23
Classification tables ...................................................................................................................................... 23
Lecture 13 – 27/11/2018 .................................................................................................................................. 24
Q&A .............................................................................................................................................................. 24




2

, Lecture 1 – 28/08/2018
Exam = Multiple choice questions
+ Bonus tutorial quizzes

▪ Simple random sampling
Every member in the population has an equal chance to be sampled
▪ Stratified sampling
The population is divided into strata (e.g., based on gender, age); within each stratum a
random sample is drawn
▪ Convenience sampling
Sample of people who are readily available (e.g., people who are present in the cafeteria,
family and friends of the researcher, first year psychology students)

Descriptive statistics: summarizing data
- Measures of central tendency
o Mean
o Median: the score that separated the higher half of data from the lower half
o Mode: the score that is observed most frequently
- Measures of dispersion
o Variance
o Standard deviation

Inferential statistics: if we want to make generalization about the population, descriptive statistics of
the sample are not enough. We use inferential statistics to draw conclusions about the population,
based on the information from the sample.
- Null hypothesis significance testing
- Confidence interval estimation

Null hypothesis significance testing
1. We formulate the null and alternative hypothesis
H0:  = 6.0
H1:   6.0
2. We make a decision-rule
If the P-value < Alpha, we reject the null hypothesis
3. We obtain the T- and P-value from the output
→ Sig. (2-tailed) = two-tailed P value
4. We either reject of keep the null hypothesis and draw
conclusions
We keep the null hypothesis, because P > .05. We do not
have enough evidence to conclude that the average
exam score in the population does not equal 6.0.

Higher than Alpha or lower than Alpha → Reject
It’s very unlikely that it’s correct
Hence accept H1 as opposed to H0

95% Confidence Interval of the Difference
→ we can say with 95% certainty that  lies between … and …
Definition: when we carry out an experiment over and over again, the 95% confidence interval will
contain the real value of the parameter of interest (e.g., ) in 95% of the cases.
Interpretation: based on the data, this range of values probably contains .


3
$8.48
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Reseñas de compradores verificados

Se muestran los comentarios
6 año hace

5.0

1 reseñas

5
1
4
0
3
0
2
0
1
0
Reseñas confiables sobre Stuvia

Todas las reseñas las realizan usuarios reales de Stuvia después de compras verificadas.

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
imke-ginneken Tilburg University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
51
Miembro desde
7 año
Número de seguidores
43
Documentos
20
Última venta
1 año hace

4.0

14 reseñas

5
4
4
6
3
4
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes