100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Samenvatting Course 5 Biostatistics and Advanced Epidemiology

Puntuación
3.5
(2)
Vendido
6
Páginas
53
Subido en
14-09-2019
Escrito en
2015/2016

Samenvatting course 5 biostatics and Advanced epidemiology

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
14 de septiembre de 2019
Número de páginas
53
Escrito en
2015/2016
Tipo
Resumen

Temas

Vista previa del contenido

Samenvatting module 5:
Biostatistics & Advanced Epidemiology




Samenvatting module 5:

Biostatistics & Advanced Epidemiology




1

, Samenvatting module 5:
Biostatistics & Advanced Epidemiology

Inhoudsopgave

1. College 1: Reiteration elementary analysis & multiple linear regression ........................................... 4
1.1 Leerdoelen ..................................................................................................................................... 4
1.2 Herhaling module 3 ....................................................................................................................... 4
1.3 Lineaire regressie analyse ............................................................................................................. 4
1.4 Multivariate lineaire regressie ...................................................................................................... 6
2. College 2: Analysing time-related data: Survival & Cox Regression Model ...................................... 10
2.1 Leerdoelen ................................................................................................................................... 10
2.2 Survival time analyse ................................................................................................................... 10
2.3 Uitkomsten survival time analyse ............................................................................................... 12
2.4 Cox proportional hazard regression analysis .............................................................................. 13
3. College 3: Multivariate logistic regression – building a prediction model. ....................................... 16
3.1 Leerdoelen ................................................................................................................................... 16
3.2 Multivariate logistische regressie analyse................................................................................... 16
3.3 Predictiemodellen ....................................................................................................................... 17
3.4 Ontwikkelen van een predictiemodel met logistische regressie ................................................ 18
4. College 4: Analysis of repeated measures ........................................................................................ 21
4.1 Leerdoelen ................................................................................................................................... 21
4.2 Herhaalde metingen .................................................................................................................... 21
4.3 Analyse van herhaalde metingen ................................................................................................ 23
4.4 Lineair mixed effects model ........................................................................................................ 24
5. College 5: Introduction to propensity scores .................................................................................... 30
5.1 Leerdoelen ................................................................................................................................... 30
5.2 Correctie van data ....................................................................................................................... 30
4.3 Propensity scores ........................................................................................................................ 31
4.4. Gebruik van propensity scores ................................................................................................... 33
6. College 6: Modelling a causal association ......................................................................................... 35
6.1 Leerdoelen ................................................................................................................................... 35
6.2 Doel van regressie analyses......................................................................................................... 35
6.2.1 Doel van causaal onderzoek ................................................................................................. 35
6.2.2 Exploratief onderzoek .......................................................................................................... 35
6.2.3 Predictieonderzoek .............................................................................................................. 36
6.2.4 Verklarend onderzoek .......................................................................................................... 37


2

, Samenvatting module 5:
Biostatistics & Advanced Epidemiology
6.3 Causale verbanden ...................................................................................................................... 37
6.3.1 DAG....................................................................................................................................... 37
6.3.2 Confounding ......................................................................................................................... 38
6.3.3 Mediatie ............................................................................................................................... 39
6.3.4 Selectie bias .......................................................................................................................... 39
6.4 Causale beschrijving .................................................................................................................... 40
7. College 7: Advanced techniques for intervention research .............................................................. 42
7.1 Leerdoelen ................................................................................................................................... 42
7.2 Sample size berekening ............................................................................................................... 42
7.3 Advanced designs ........................................................................................................................ 45
8. College 8: Advanced techniques for research of diagnostic tests ..................................................... 48
8.1 Leerdoelen ................................................................................................................................... 48
8.2 Doelen van diagnostisch onderzoek............................................................................................ 48
8.3 Paradigma’s voor diagnostiek ..................................................................................................... 49




3

, Samenvatting module 5:
Biostatistics & Advanced Epidemiology

1. College 1: Reiteration elementary analysis & multiple linear
regression
1.1 Leerdoelen

• De student begrijpt de multivariate lineaire regressie analyse.
• De student kan een multivariate lineaire regressie analyse uitvoeren.
• De student kan data modelleren om onafhankelijke determinanten te beschrijven en
corrigeren voor confounding en effectmodificatie.


1.2 Herhaling module 3

Met onbetrouwbare data zijn de uitkomsten van statistische analyses ook onbetrouwbaar (troep in =
troep uit). Het controleren van de database is een belangrijke stap voordat men kan beginnen met
analyseren. Data is categorisch (nominaal, dichotoom) of numeriek. Op de data kan beschrijvende
statistiek (samenvattend, tabel 1) of inferentiële statistiek (hypothese testen, generalisatie van sample
naar populatie) worden gebruikt, afhankelijk van de vraagstelling die men probeert te beantwoorden.
Met inferentiële statistiek wordt de nulhypothese getest en een p-waarde bepaald op basis van de
standard error (SE). Inferentiële statistiek bestaat uit testen, schatten, verklaren en voorspellen.


Voor dichotome data wordt een proportie en een standaarddeviatie (SD) bepaald om het sample te
beschrijven. Verschillen tussen samples (bijvoorbeeld tussen een therapiegroep en een
controlegroep) worden absoluut (verschil in proporties met 95% betrouwbaarheidsinterval (CI)) of
relatief (relatief risico of odds ratio met 95% CI) bepaald. Numerieke data wordt beschreven door een
gemiddelde en een SD (mits normaal verdeeld, anders de mediaan en min-max als spreidingsmaat).
Verschillen tussen samples worden weer gegeven door het verschil in gemiddelden met 95% CI. De
puntschatter (proportie, gemiddelde) wordt gezien als signaal en de spreiding is de ruis (SD, 95% CI).
De ratio tussen signaal en ruis wordt getest en hier komt de p-waarde uit voort. Hiervoor wordt
bijvoorbeeld de t-test, ANOVA of de χ² gebruikt. Hiervoor moet worden bepaald of het gaat om
gepaarde of ongepaarde data (gepaarde data heeft een lagere SE) en of het gaat om twee of
meerdere groepen.


Verder kan de samenhang tussen waardes worden gemeten, dit wordt correlatie genoemd. Wanneer
er tussen twee variabelen meerdere associaties mogelijk zijn door verschillen in de sample kan
regressie analyse worden toegepast. Regressie analyse wordt gebruikt om een uitkomst te
voorspellen, om een uitkomst te verklaren of om een betrouwbare schatting te geven van het effect.


1.3 Lineaire regressie analyse

Het general linear model (GLM) is een groep van verschillende regressie analyses. De afhankelijke
variabele bepaald welke variant wordt gebruikt. Zo wordt voor een dichotome uitkomst logistische


4
$10.14
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Reseñas de compradores verificados

Se muestran los 2 comentarios
1 año hace

a lot of reference to SPSS specifically, which I'm not using, made it confusing for me.

1 año hace

thanx

3 año hace

3 año hace

thanx!

3.5

2 reseñas

5
0
4
1
3
1
2
0
1
0
Reseñas confiables sobre Stuvia

Todas las reseñas las realizan usuarios reales de Stuvia después de compras verificadas.

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
aqua03 Universiteit Utrecht
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
376
Miembro desde
9 año
Número de seguidores
232
Documentos
89
Última venta
2 meses hace

Graag een review achterlaten, grazi mille:)

3.8

91 reseñas

5
25
4
40
3
19
2
1
1
6

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes