100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary of paper PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

Puntuación
-
Vendido
-
Páginas
5
Subido en
05-07-2024
Escrito en
2023/2024

This is a summary of the paper PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation for the course Seminar of Computer Vision by Deep Learning in TU Delft

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
5 de julio de 2024
Número de páginas
5
Escrito en
2023/2024
Tipo
Resumen

Temas

Vista previa del contenido

PointNet: Deep Learning on
Point Sets for 3D Classification
and Segmentation
Point cloud is an important type of geometric data structure. Due to its irregular
format, most researchers transform such data to regular 3D voxel grids or
collection of images. This, however, renders data unnecessarily voluminous
and causes issues. This paper proposes a type of neural network that directly
consumes point clouds, which well respects the permutation invariance of
points in the input.



💡 Permutation Invariant refers to a property of a model where the output
remains unchanged regardless of the order of the input elements.



Introduction
Typical convolutional architectures require highly regular input data formats,
like those of image grids or 3D voxels, in order to perform weight sharing and
other kernel optimizations. This however renders the resulting data
unnecessarily voluminous.
Key Contributions:

We design a novel deep net architecture suitable for consuming unordered
point sets in 3D

We show how such a net can be trained to perform 3D shape classification,
shape part segmentation and scene semantic parsing tasks

We provide thorough empirical and theoretical analysis on the stability and
efficiency of our method

We illustrate the 3D features computed by the selected neurons in the net
and develop intuitive explanations for its performance.


Related Works



PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation 1

, Point Cloud Features, Deep Learning on 3D Data, Deep Learning on
Unordered Sets


Problem Statement
A point cloud is represented as a set of 3D points where each point P is a
vector of its (x,y,z) coordinate plus extra feature channels such as color, normal
etc.


Deep Learning Point Sets
Property of Point Sets in R^n
The input is a subset of points from an Euclidean space. The 3 main properties:

1. Unordered. Unlike pixel arrays in images or voxels point cloud is a set of
points without specific order.

2. Interaction among points. The points are from a space with a distance
metric. It means that points are not isolated, and neighboring points form a
meaningful subset. The model needs to be able to capture local structures
from nearby points.

3. Invariance under transformations: As a geometric object, the learned
representation of the points set should be invariant to certain
transformations.

PointNet Architecture




PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation 2
$8.66
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
guillemribes

Documento también disponible en un lote

Conoce al vendedor

Seller avatar
guillemribes Technische Universiteit Delft
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
1 año
Número de seguidores
0
Documentos
11
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes