100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Resumen

Summary data science and machine learning

Puntuación
-
Vendido
-
Páginas
10
Subido en
28-06-2024
Escrito en
2023/2024

original notes of data science.

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
28 de junio de 2024
Número de páginas
10
Escrito en
2023/2024
Tipo
Resumen

Temas

Vista previa del contenido

Difference between data science and machine
learning full details:

Data science and machine learning are interconnected fields that involve the use of
algorithms, data analysis, and computational techniques to extract insights and make
decisions from data. Here’s a comprehensive overview of both fields:

Data Science
Overview

Data science is an interdisciplinary field that uses scientific methods, processes, algorithms,
and systems to extract knowledge and insights from structured and unstructured data. It
involves various stages including data collection, cleaning, analysis, visualization, and
interpretation.

Key Components

1. Data Collection: Gathering data from various sources like databases, APIs, and web
scraping.
2. Data Cleaning: Handling missing values, removing duplicates, and correcting
inconsistencies to prepare the data for analysis.
3. Data Analysis: Using statistical techniques and tools to explore and understand the
data.
4. Data Visualization: Creating visual representations of data to communicate insights
effectively using tools like Matplotlib, Seaborn, or Tableau.
5. Data Interpretation: Making sense of the analyzed data and deriving actionable
insights.

Tools and Technologies

 Programming Languages: Python, R, SQL
 Data Manipulation: Pandas, NumPy
 Data Visualization: Matplotlib, Seaborn, Plotly, Tableau
 Big Data Technologies: Hadoop, Spark
 Databases: SQL, NoSQL databases like MongoDB
 Cloud Services: AWS, Google Cloud, Azure

Machine Learning
Overview

Machine learning (ML) is a subset of artificial intelligence (AI) that involves training
algorithms to learn from and make predictions or decisions based on data. It focuses on the

, development of models that can improve their performance on a task over time with more
data.

Types of Machine Learning

1. Supervised Learning: The model is trained on labeled data. Examples include
regression and classification.
o Algorithms: Linear Regression, Logistic Regression, Decision Trees, Random
Forests, Support Vector Machines (SVM), Neural Networks
2. Unsupervised Learning: The model is trained on unlabeled data to identify patterns.
Examples include clustering and association.
o Algorithms: K-Means, Hierarchical Clustering, Principal Component
Analysis (PCA)
3. Semi-supervised Learning: Uses both labeled and unlabeled data for training.
4. Reinforcement Learning: The model learns by interacting with an environment and
receiving feedback through rewards or penalties.
o Algorithms: Q-Learning, Deep Q-Networks (DQN)

Key Concepts

 Features: Independent variables used as input to the model.
 Labels: Dependent variable or output the model is trying to predict.
 Training: The process of teaching a model using data.
 Validation: Assessing the model's performance using a separate dataset during
training to tune parameters.
 Testing: Evaluating the model’s performance on a new, unseen dataset to measure its
accuracy and generalization.

Tools and Libraries

 Programming Languages: Python, R
 Libraries:
o Scikit-Learn: Provides simple and efficient tools for data mining and data
analysis.
o TensorFlow: An open-source framework for high-performance numerical
computation and deep learning.
o Keras: A high-level neural networks API running on top of TensorFlow.
o PyTorch: An open-source machine learning library based on the Torch
library.
o XGBoost: An optimized gradient boosting library designed to be highly
efficient and flexible.
o LightGBM: A gradient boosting framework that uses tree-based learning
algorithms.

Process

1. Data Preparation: Gathering and cleaning the data.
2. Feature Engineering: Selecting and transforming variables to improve model
performance.
$18.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
ksgokul2003

Conoce al vendedor

Seller avatar
ksgokul2003 Cumberland County College
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
1 año
Número de seguidores
0
Documentos
4
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes