100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Resumen

RDS samenvatting (responsible data science

Puntuación
-
Vendido
-
Páginas
13
Subido en
26-06-2024
Escrito en
2023/2024

samenvatting alle hoorcolleges (6) voor het vak RDS voor de endterm. exclusief papers

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
26 de junio de 2024
Número de páginas
13
Escrito en
2023/2024
Tipo
Resumen

Temas

Vista previa del contenido

💽
Responsible Data Science
Created @May 6, 2024 4:37 PM

Class RDS

Created by Tieeny Chao



HC 1: Organization + Introduction
Data science —> accuracy and efficiency: what can we do with data
Responsible data science —> responsility: what we should and shouldn't do
with data


8 principles of AI ethics —> a set of values, principles, and techniques that
employ widely accepted standards of right and wrong to guide moral conduct
in the development and use of AI technologies.

1. Privacy —> AI systems should respect individuals' privacy, both in the use
of data and by providing impacted people with agency over their data and
decision made with it.

a. information collection: violated surveillance (observational) and
interrogation (directly asking)

b. information processing: what is done with the data once gathered.

i. should only be used for the right goals and consent obtained for.

c. information dissemination: data leaks and human gaze

d. invasion: disturb a private moment, home, thought and experience.

i. intrusion —> pop-up

ii. decisiononal interference —> convince someone to buy more food
than they want




Responsible Data Science 1

, 2. Accountability —> AI should include mechanism to ensure that
accountability for the impact of AI systems is appropriately distributed, and
remedies are provided.

3. Safety and security —> AI systems should be safe, performing as intended,
and also secure.

4. Transparency and explainability —> AI systems must be designed and
implemented to allow for oversight. Non-transparent or unexaplainable
outcomes can be caused by insufficient transparency.

5. Fairness and non-discrimination —> AI systems must be designed and
used to maximize fairness and promote inclusivity (against AI bias).

a. Statisitcal bias: a model is biased if it does not summarize the data
correctly.

b. Societal bias: if a dataset or model does not represent the world
“correctly”.

i. meaning: The words as it is or as it should be

6. Human control of technology —> Important decisions should remain
subject to human review

7. Professional responsibility —> ensuring that the appropriate stakeholders
are consulted and long-term effects are planned for by individuals that
develop and deploy AI systems.

8. Promotion of human values —> AI's ends and means by which it is
implemented, should correspond with our core values and promote
humanity's well-being.



_______________________________________________________



HC 2: The algorithm dimension
White-box vs. black-box algorithms

White-box model represenation —> known to the humans and
understandable how the model came into place.

linear regression, logistic regression, discriminant analysis




Responsible Data Science 2
$9.33
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
tieenychao

Conoce al vendedor

Seller avatar
tieenychao Universiteit Utrecht
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
1
Miembro desde
1 año
Número de seguidores
1
Documentos
2
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes