100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

MFP1501 Assignment 2 2024 - 18 June 2024

Puntuación
-
Vendido
-
Páginas
17
Grado
A+
Subido en
12-06-2024
Escrito en
2023/2024

MFP1501 Assignment 2 2024 - 18 June 2024

Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
12 de junio de 2024
Número de páginas
17
Escrito en
2023/2024
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

MFP1501
ASSIGNMENT 2 2024
- 18 JUNE 2024
QUESTIONS WITH COMPLETE ANSWERS




[DATE]

[Company address]

,MFP1501 Assignment 2 2024 - 18 June 2024

Question 1

Jacob and Willis (2003) outline hierarchical phases through which multiplicative thinking
develops, which include one-to-one counting, additive composition, many-to-one counting,
and multiplicative relations. Discuss each phase to show how best you understand it. N.B. It
should not be the same. Be creative. (20)

One-to-One Counting

Description: One-to-one counting is the foundational phase where children learn to count
objects one at a time. Each object is paired with a single counting word, ensuring a direct
correspondence between the number of items and the number words.

Example: Imagine a child playing with blocks. As they place each block into a box, they count
aloud: "one, two, three, four, five." This phase focuses on the child's ability to correctly assign
one number to each object, ensuring an accurate count.

Educational Activity: A teacher might use a counting book where children have to count the
number of animals on each page. This reinforces the concept of one-to-one correspondence as
they point to each animal and say the corresponding number.

Significance: This phase is crucial because it establishes the basic understanding of numbers and
counting, which is necessary for more complex mathematical concepts. Without mastering one-
to-one counting, a child would struggle with higher-level arithmetic.

Additive Composition

Description: Additive composition involves understanding that numbers can be broken down
into parts and recombined. Children learn that numbers are composed of smaller numbers added
together.

Example: Consider a child who has 7 apples. They realize that this total can be broken down
into 3 apples and 4 apples, or 5 apples and 2 apples, and still add up to 7.

, Educational Activity: A teacher might provide a set of 10 blocks and ask the children to find all
the different ways to group the blocks into two piles. For instance, 1+9, 2+8, 3+7, etc. This
exercise helps children see the flexibility of numbers and the various ways they can be
combined.

Significance: Additive composition is essential for understanding more complex operations like
addition and subtraction. It helps children see the relationships between numbers and prepares
them for multiplication and division.

Many-to-One Counting

Description: Many-to-one counting, also known as skip counting, involves counting objects in
groups or sets rather than individually. This phase introduces the concept of multiplication as
repeated addition.

Example: A child counting by twos might count: "2, 4, 6, 8, 10," instead of counting each
number individually. This method groups numbers into sets of two.

Educational Activity: A teacher might use a number line and ask children to place markers at
intervals of 5. By doing so, children practice counting by fives (5, 10, 15, 20, etc.), reinforcing
the idea of grouping.

Significance: Many-to-one counting is a stepping stone to understanding multiplication. It helps
children grasp the concept of adding equal groups together, which is fundamental to more
advanced mathematical operations.

Multiplicative Relations

Description: Multiplicative relations involve understanding the relationships between numbers
in terms of multiplication and division. Children learn to see numbers as factors and products,
understanding that multiplication is not just repeated addition, but a relationship between
quantities.

Example: A child might understand that 3 groups of 4 apples (3 x 4) equal 12 apples.
Conversely, they can also comprehend that dividing 12 apples into 3 groups gives 4 apples per
group (12 ÷ 3 = 4).
$4.00
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
QuizDoc Chamberlain College Of Nursng
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
226
Miembro desde
2 año
Número de seguidores
193
Documentos
1051
Última venta
2 meses hace

3.7

31 reseñas

5
13
4
4
3
10
2
0
1
4

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes