100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

STA3702 Assignment 2 2024 - DUE 7 June 2024

Puntuación
-
Vendido
1
Páginas
25
Grado
A+
Subido en
03-06-2024
Escrito en
2023/2024

STA3702 Assignment 2 2024 (Unique Nr. 199414) - DUE 7 June 2024 ;100 % TRUSTED workings, explanations and solutions. For assistance call or W.h.a.t.s.a.p.p us on ...(.+.2.5.4.7.7.9.5.4.0.1.3.2)........... Question 1 [44] The number of cars, X , passing through a certain intersection every week has Poisson distribution with mean λ. Let X1 , X2 , ..., Xn be independent variables representing the number of cars passing through the intersection onn randomly chosen weeks of the year. Furthermore, let S2 = 1 n − 1 nX i=1 Xi − X 2 S⋆2 = n − 1 n S2 and X = 1 n nX i=1 Xi be three competing estimators of λ. Given: V (S 2 ) = E [X i − λ] 4 n − λ 2 (n − 3) n(n − 1) . (a) Determine: (i) E X ; and (ii) prove or disprove thatE (S 2 ) = λ. (10) Hint: nX i=1 Xi − X 2 = nX i=1 X 2 i − nX 2 . (b) Prove or disprove thatS⋆2 is a method of moments estimator of λ. Hint: nX i=1 Xi − X 2 = nX i=1 X 2 i − nX 2 . (6) (c) Determine the bias of S⋆2 in estimating λ. (4) (d) Determine the variances of: (i) X ; and (ii) S⋆2. (8) (e) Determine the mean square errors of: (i) X ; (ii) S2 ; and (iii) S⋆2. (4) (f) Which of X , S2 and S⋆2 is the least accurate estimator of λ. Justify your answer. (3) (g) Prove or disprove thatX , S2 and S⋆2 are consistent estimators of λ. (9) Question 2 [42] The lifetime (X in years) of an electronic component manufactured by certain company has a distribution with probability density function: f (x|θ) =    1 θ exp − (x − µ) θ if θ > 0 and x > µ , 0 otherwise; where θ is unknown andµ is known. The company has hired you to estimateθ.Suppose that X1 , X2 , ..., Xn are the lifetimes ofn randomly chosen electronic components manufactured by the company. 2 STA3702/012/0/2024 Given: E(X) = θ − µ and V (X) = θ 2 . (a) What are the simplified likelihood and log-likelihood functions ofθ? (6) (b) Show that nX i=1 Xi is a sufficient statistic for θ. (4) (c) Show that nX i=1 Xi is a minimal sufficient statistic for θ. (5) (d) Prove or disprove that the maximum likelihood estimate ofθ is ˆθ = x − µ. (5) (e) What is the maximum likelihood estimate of θ 2 ? Justify your answer. (2) (f) Show that the method of moments estimate of θ 2 is ˜θ 2 = (x − µ) 2. (3) (g) Calculate the Fisher information about θ in the sample. (6) (h) What is the observed information about θ in the sample? (2) (i) Determine the Crammer-Rao lower bound for the variance of an unbiased estimator of θ. (2) (j) Prove or disprove that the maximum likelihood estimator of θ is also the minimum variance unbiased estimator of θ. (7) Question 3 [12] Refer to Question 2. Given: A distribution belongs to the regular 1-parameter exponential family if among other regularity conditions its probability density or mass function has the form: f (x|β) = g (x) exp {βt (x) − ψ (β)} , β ∈ Ω ⊂ (∞, ∞). Furthermore, for this distribution E[t(X)] = ψ ′ (β) and V ar[t(X)] = ψ ′′ (β). (a) Show that f (x|θ) belongs to the 1-parameter exponential family by expressing it in the form f (x|β) above. Do not forget to identify β, t(x) and ψ(β). (6) (b) What is the complete sufficient statistic for θ? Justify your answer. (2) (c) Find the mean and the variance of the complete sufficient statistic forθ. (4) Total: [98]

Mostrar más Leer menos
Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
3 de junio de 2024
Número de páginas
25
Escrito en
2023/2024
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

STA3702
ASSIGNMENT 2 2024
UNIQUE NO. 199414
DUE DATE: 7 JUNE 2024

, STA3702/012/0/2024




Tutorial letter 012/0/2024


Statistical Inference III
STA3702

Year module


Department of Statistics


ASSIGNMENT 02 QUESTIONS




university
Define tomorrow. of south africa

, ASSIGNMENT 02 QUESTIONS
Unique Nr.:199414
Fixed closing date: 7 JUNE 2024



Question 1 [44]
The number of cars, X , passing through a certain intersection every week has Poisson dis-
tribution with mean λ. Let X 1, X2, ..., Xn be independent variables representing the number of
cars passing through the intersection on n randomly chosen weeks of the year. Furthermore,
let

1 X 1X
n n
2 n−1 2
S2 = Xi − X S⋆2 = S and X = Xi
n − 1 i=1 n n
i=1

be three competing estimators of λ.
E [X i− λ] 4 λ 2(n − 3)
Given: V (S ) =
2 − .
n n(n − 1)

(a) Determine: (i) E X ; and (ii) prove or disprove that E (S 2) = λ. (10)
Xn 2
Xn
Hint: Xi − X = X i2 − nX 2.
i=1 i=1

(b) Prove or disprove that S⋆2 is a method of moments estimator of λ.
Xn 2
Xn
Hint: X i − X = X i2 − nX 2. (6)
i=1 i=1

(c) Determine the bias of S⋆2
in estimating λ. (4)
(d) Determine the variances of: (i) X ; and (ii) S⋆2 . (8)
(e) Determine the mean square errors of: (i) X ; (ii) S2; and (iii) S⋆2 . (4)
(f) Which of X , S2 and S⋆2 is the least accurate estimator of λ. Justify your answer. (3)
(g) Prove or disprove that X , S2 and S⋆2 are consistent estimators of λ. (9)

Question 2 [42]
The lifetime ( X in years) of an electronic component manufactured by certain company has
a distribution with probability density function:

 1 (x − µ)
 θ exp − θ
if θ > 0 and x > µ ,
f (x|θ) =


0 otherwise;
where θ is unknown and µ is known. The company has hired you to estimateθ. Suppose that
X 1, X2, ..., Xn are the lifetimes of n randomly chosen electronic components manufactured by
the company.


2
$2.71
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
LIBRARYpro University of South Africa (Unisa)
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
10515
Miembro desde
2 año
Número de seguidores
4904
Documentos
4814
Última venta
3 horas hace
LIBRARY

On this page, you find all documents, Package Deals, and Flashcards offered by seller LIBRARYpro (LIBRARY). Knowledge is Power. #You already got my attention!

3.7

1454 reseñas

5
681
4
234
3
243
2
78
1
218

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes