100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Notas de lectura

Lecture Notes on Equivalence Relations and Modular Arithmetic (COMP11120)

Puntuación
-
Vendido
-
Páginas
3
Subido en
30-05-2024
Escrito en
2023/2024

Dive into the concepts of equivalence relations and modular arithmetic with these comprehensive lecture notes for COMP11120. Covering key topics such as the properties and applications of equivalence relations, and the fundamentals of modular arithmetic, these notes provide clear explanations and illustrative examples to help you grasp these essential mathematical concepts. Ideal for students enrolled in COMP11120 or anyone looking to enhance their understanding of these topics, these notes are well-organized and concise, making complex ideas more accessible. Boost your learning and excel in your studies with this essential resource!

Mostrar más Leer menos
Institución
Grado








Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Desconocido
Grado

Información del documento

Subido en
30 de mayo de 2024
Número de páginas
3
Escrito en
2023/2024
Tipo
Notas de lectura
Profesor(es)
Andrea schalk
Contiene
Equivalence relations and modular arithmetic

Temas

Vista previa del contenido

Equivalence Relations and Modular Arithmetic

Binary relations

When consider relations from We show this directed graph
discussing relations have - as
as we seen sometimes , we a set can a as
follows
.

S to itself.


V
Instead of R
saying R from S usually say that binary
is a relation 5 to wo is a
1


relation on S
.

L
>

We can represent binary relations as a directed graph. 2 wh


-v


Y
-
X
Example : Let S = Ev ,
w
,
x
, Y, 2)
Let R be a
binary relation on S where

R ((v =
, w) , (v, x) , (2 , 2), (W , v) , (W , 2) (W x) ( -, ) (2
, , , , , 2)]



Properties of relations


Reflexivity Symmetry Transitivity

Informally a relation is
reflexive if every element
is A relation is symmetric if we can
go from one A relation is transitive if
for all s
,
sin S if there is
related to itself. element to another , then we can also go back
.
a path between two elements s and S' , then there
to s
A
binary relation R On a set S is symmetric if and only
is an
edge from s
A binary relation R is reflexive if and
only if for all
if we have for all s, s'ES if (5 5) ER ,
,
then
SES , (5 3) EIR (s' 5) R A relation R S transitive if
E
binary set is and only if
,
,
On a we


have for all s'ES if (5 5) ER s, ,
and (sis") ER
,
then 15 S") ER
,
.
We have
already seen that the identify relation for a Example : The binary relation Ron S =
Ev ,
w
,
x
, y, 2)
set S defined shown is not symmetric (v , X) ER ,




s
is as as

but (X , v) R There are other pairs

((5 5) SxSses]
.




Ig = ,
missing also


V
1



A binary relation R on S is reflexive if and
only if




"
Is &R wh Ev 2)
2 [
Example : The binary relation R on S =
,
W
,
X
, y, shown

is not transitive as (V , W) and (W , v) are in the

relation ,
but (v , v) is not.


Example : The binary relation R on S =
Ev ,
w
,
x
, y, 2) Y
shown is not reflexive as (v , v) &R
,
V
(W w),
R, and (y Y) # R
,
. 1




Symmetric Closure of a
Binary Relation
L
>

V 2 wh
The
symmetric
[
closure allows us to take a relation and
1


add a minimum number of pairs to make it

symmetric .
·
L
>

2 wh Y
Recall that the opposite relation for a
binary
relation R on a set S is defined as


Y · Rop =
((5; 3) =Sx 5/(s s) ,
ER] Transitive Closure of a
Binary Relation

The transitive closure allows us to take a relation and
add number of to make it
Reflexive
a minimum pairs
Closure of a
Binary Relation The symmetric closure of the binary relation R on the
transitive.
Set S is
given by
The reflexive closure allows us to take a relation and
add it The transitive closure of the binary relation R on the set
a minimum number of pairs to make reflexive .


RuRO = Rud(sis)eSxS((s 5) , E
R] S is
given by adding the set of pairs (Si , Sul to R
where S1 , S2 Sn ins with n = 2 such that for
The reflexive closure of R by , ...


is
given
all 1 i < n-1 we have (Si , Sin1) ER
seS]
.




Rulg =
Ru((s s) ,
If a relation R is both reflexive and symmetric ,

We can represent it as an Undirected Graph

A

i V




Z
·


su 3 2 W




y? · Y X
$11.03
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
jpxoi

Documento también disponible en un lote

Conoce al vendedor

Seller avatar
jpxoi The University of Manchester
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
1 año
Número de seguidores
0
Documentos
20
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes