100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Engineering Mathematics 214 (SU) Summary

Puntuación
-
Vendido
1
Páginas
21
Subido en
23-05-2024
Escrito en
2023/2024

A comprehensive but concise summary of all concepts covered in the Engineering Mathematics 214 module at Stellenbosch University.

Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
23 de mayo de 2024
Número de páginas
21
Escrito en
2023/2024
Tipo
Resumen

Temas

Vista previa del contenido

(2 4).
Exact DES




of the
An DE form Al
y) di B(x y) dy
:
exact is + ,
= 0
"derivative of
,

B with respect "Theorem for function f(x y) ,
to any
:
a ,




where Bx ?
:
Ay =




fcy
=
fue

The solution is f(x y) f exists Ay Bc.
C such
only when
: =
,
an =




where :
fi : A
fy = B . we know this from math 145.
,
eng


y) dx (2xy 1)dy
:
(x x 1
eg y())
= :
+ + + - = 0
,




Bx ?
Ay
· =




Ay z(x + y) Bx
2y Ay B
= = =
+ 2) :
.




find f(x y) such that fx =
A 3 fy B
·
=
,




y)2
Wie
fx (x x
fy 2xy 1
=
+ = + -




derive
xz
= +
2Szy +
y2 :
f =

xyz +
xy -




y
+ h(x)



:
f =
(3 + x
y
+
xyz +
g(y)


so jx3 +
x(y +
xyz +
g(y) =
xyz +
xy
-




y
+
h(x) ·
don't do both like this ,
rather do one
,
then sub into the other
.




:
g(y)
= -



y}n(x) =
jx3 see next example for clarification
.




·
f(x y),
=
jx3 +
xy +
xyz
-




y
=
C but y(1) =
155 + 1 + 1 -
1 =




. c =
4

&( x
xy 5
: +
y +
y
- =




Ad
Integrating factors if Boy is exact
:
w = + not ,




it is sometimes possible to find an
integrating factor such that
go is exact ,
ie :




gAd +
gBdy is exact.


A


eg
:
solve y(x y + +
1)dx + x + 2y) dy =
0
,
f(x) =
,
y


exact ? Ay =
Bx ? both
might work , one
might work
,
none
might work.


&




2y + x + 1 I :
no
, not exact.
Try multiplying by an
integrating factor I or
Ily) to make it exact :




[(x) y (x 1)0x
[(( zy) dy-
+ 0
. .
+
y + +



new A


exact ? to make Ay Bx
try
·
= :




[x . (x +
2y + 1) = [() . (1) + I'x) . (x +
zy)


I'(sc) (x) zy) I(x) (sz zy)
=
.
+ . +




I' (s2) =
1(S2)
:
I(x) = e :
new DE : ey . (x +
y + 1)dx + e? (x +
zy)dy
=
0 which is exact !




find f(x y) such that ex? (x
fy B
zy)
·

:
,
= = +




ex e
fy x
=

zy
.
+ .




=A
:
y
=
x .

y e" . +
ye +
g(x) =
0 ,
now derive w r t
. .
x :
fx =
y(x .
ex + e) +
y!
ex +
g(x) =
e y(x +
y
+
1)



:
yoe" ye" + +
ye +
g(x) =
yxe" yze ye+ +
=
g'(x) = 0
,
take
g(x) = 0




f(x y) ,
=
c xye" +
yze" = c ,
set
y(0)
=
1 : c =
1




:
yxe" +
ye =



1

,eg
:
find an
integrating factor I which will make
cydi + (2x2 +
3y2-20) dy ,
exact


A B



Not exact because Ay + Bs.




make by dy (2x
Try by multiplying I() [ (C) 3y2 20) dy
[K
to it exact :
+ + =
0
sy
-
·
.




B


Can we make it exact ? Ay =
Bx,




Ay =
I(x) .
x =
Bx =
['() . (2x2 +
3yz -
20) + [(x) . (4x)




:
I' (sc) (2x2 20) [(x) ( 3x)
3yz
+ = -
-
.
.




I'() = ( which does not make sense (can't hav so


Try to make it exact
by multiplying by I(y)
:
F(y) xy dy
·
+
I (y) (2x.
+
3y2 20) dy - =
0


A
B


Can we make it exact ? Ay =
Bx,




Ay I'(y) xy I(y) Bx [(y) (4()
= =
. + . x =
.




:
I'(y) I(y) 3x
=
.
xy .




I'(y) =
I(y) .


33

:
I'(y) =
[(y) .

3

85 . =
3


CE Ol =

/gdy :
Inl =
3Iny
:
I =
y3
.




(2 5)
.
solutions by substitutions




Homogeneous DES : a function f(x y) , is
homogenous of degree n if flac ay) ,
=
a f(x y) . ,
eg
:
f(x y) ,
=
y +
By is not
homogenous.


In practice ,
this means that for each term in f ,
the sum of the
degrees of c by must be the same . f(x y) ,
=
xy 3x*y + is
homogenous of degree 5.




solving a
homogenous DE :
to solve A(x ,
y)@x + B(x ,
y) dy
=
0
, eg
:
solve (x +
y2)dx +
(2
-



xy)dy =
0
,






where A 3 B are both
homogenous of the same
degree, A ↳ is
homogenous of degree .
2




make the substitution (orx vy), try y(x u) dy udx xdu
Us
: =
y
= =
,
=
ux =
+




you'll end up with a solvable separable DE.
y
=
u(() .
x
:
(x + u2j2)dx + (x2 ux2)(udx
-
+ xdu)


:
(x2 + u2x + x (u -

42x2)dx + (x3 - ux3)du =
0




eg
: solve :
( +
zy2) =
xy , y( -
1) =
1 ·
(2(1 + u)dx + x3(1 -
u)du =
0




homogenous of degree two Sox =
-

:
le + y(x u) ,
=
ux
dy =
xdu + u0x :
(x dx =

-J , Indu : le + w = 1+ u
,
u = w -
,
dw = du




2x[u2)dx /1 -1 d /-
-


·
(x2 + =
xu(xdu +
udx) = d




(s(2 + 2x[uz)dx =
(3udu + xuzdx =
z(n(w) -w =
z(m(u 1) + -
(u 1) -




(1 +
uz)dx =
cudu : Ink) = -



(2(n)1 + -

(3 1))
,
-
+ c




Ji 0x =
J , fuz On let 1uz = w on =
zu ou I mkc) = -

(2(n(((x -
)(x + y))) -
- +
1) + C




Ink) =
[ /1 + u21 + c =
/wo (n(x2) = -

(2ink - 1 + 2 in(s + y) -

3 + 1) + C




In (2) . 2 =
(n(1 + uz) + D (n(x) =
2 (n() -
zink + y) +
, + D

In/sc-
&

In (x2) = (n(1 + uz) + D ==
xz =
eP(1 + uz) -

In(2) + (n((x + y(4 =
G + D

, x2 =
A(1 +
4) In (y) = +




A(x2 y (xty aeP
+
x =
DER



(4 =
A(x2 yz) + :
y( 1)
- =
1 (x +y k .
e3 (k <
0)


:
1 =
A(z) = A =
2 Case 1 : 0 :
(3) = x OR Case z : <0 :
(x) = -




(4 =
((x2 yz) +
-
+y ke (k < 0) -
+y =
ke(k(0)
.




. e (AEIR)
&




solving a Bernoulli DE :
of the form & +
Pay =

flyd, eg
:
solve -y
=
e'y ,

y '" e
2
make substitution : n =
,
then it becomes a linear DE
,
Bernouli DE With P =
-1
, f(x)
=
,
n
=
2 so let u =
y =
y" ie :
y
=
u



use an
integrating factor . = u -




- 2

- eu
+ -
2
+ yz + : -

u =

eg
:
-

+ =
y



y + +
y = +
y
. + u = e Clinear DE) ...
I = e(POx = e(0x = ex



( e2dx


le-y
y -


fy = -
+ 2 y) : e u = -




egit
du In
-
4-2 .

84 -
tu" = -
t 24
-
2
Ot
·
=
E + eu = -


je( + C(((()

*

y
Y
++ u = -
linear DE .
:
It =
Ae : u = -


je + ce
.




eSt
"
Ot +)
-((
I(t) = =
+ :

y
=

zex +
c
- tu =
/ +" Of =
(n(t) + > put u =
y
+ :
y t =
(n(t) + 2




If :
ODE has the form =
f(Ax +
By +
1) ,
A ,
B
,
C constants
, eg
:
solve =
( -2x +
y) 2 -


then make substitution u =
Ax +
By + 2 to reduce to sperable DE
. let u(x) = 2x +
y
= -

2 +
8 + 2




:
u2 =
+




: G =
u2 -
a dx =
du
yu 3)(u
-
+ 3)




by parts
:
(n-su + 3)
= Eg +
u33

1 = A(u + 3) + B(u -

3) ,




A + B =
033A -
3B =
1




:
A =
5 3B = -

5

:
Jus du =
)de

: (In /u -3) -
(n(u + 3)) =
x + c (CEIR)


)
-
: In /u -31 +
(n(u + 3) = 6x + 6




-
In/3 =
6x + 62




3
*
=
k e (k = e (0) solve for :
u -3 = ke
*
(n 3)
.

, y +




u -
3 =
u .
ke6x + 3ke6


*
n(1 -
kebx) =
3(1 + ke )



u =

3 =
y
-
2




:
y
=


3 + 26
$5.71
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
kylecohead
5.0
(1)

Documento también disponible en un lote

Conoce al vendedor

Seller avatar
kylecohead Long Island University, Brooklyn
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
8
Miembro desde
4 año
Número de seguidores
9
Documentos
10
Última venta
1 mes hace

5.0

1 reseñas

5
1
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes