100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

Lecture notes Advanced Research Methods and Statistics (ARMS)

Puntuación
-
Vendido
-
Páginas
24
Subido en
23-05-2024
Escrito en
2023/2024

Lecture notes of the course Advanced Research Methods and Statistics. I used these notes for my test about the general part exam.

Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
23 de mayo de 2024
Número de páginas
24
Escrito en
2023/2024
Tipo
Notas de lectura
Profesor(es)
Anne scheel
Contiene
Todas las clases

Temas

Vista previa del contenido

Teacher: Anne Scheel, Irene Klugkist

Notes for Advanced Research Methods and
Statistics for Psychology (ARMS)


Lecture 1: Frequentists/Bayesian framework & Lineair regression analysis

Frequentists & Bayesian statistics
Frequentist framework (mainstream)
Test how well the data fit the H0
P-values, confidence intervals, effect sizes, power analysis

Bayesian framework (increasingly popular)
Probability of the hypothesis given the data, taking prior information into
account
Bayes factor (BF’s), priors, posteriors, credible intervals

Estimation (=schatting)
Frequentist framework;
Empirical research uses collected data to learn from
Information in this data is captured in a likelihood function = probability
of the data given a specific mean.
Normally distributed

All relevant informatie for
inference is contained in the
likelihood function




Bayesian framework;
In addition to the data, we may also have a prior information about the
population mean (μ)

Central idea: prior knowledge is updated with information in the data and
together provides the posterior distribution for the population mean
Advantage: Updating knowledge (today posterior is tomorrow’s
prior)
Disadvantage: Results
depend on choice of prior

Example of bounding different
priors for estimating IQ;
1. Uninformed (infinite) prior
2. Bounded prior


1

, 3. Curved prior
4. Peaked prior
5. Uncentered&peaked prior




The prior have a
influence on how
the posterior
looks like




Posterior distribution of the parameter of interprets provides all desired
estimates
Posterior mean or mode
Posterior standard deviation (SD)
Posterior 95% credible interval: providing the bounds of the part of the
posterior in which 95% of the posterior mass is

Frequentist statistic: Result and conclusion are influenced by the sampling plan

Probability (=waarschijnlijkheid)
Bayesian framework
Probability that hypothesis 1 is supported by the data (observed data)

PMP = posterior model probability
Probability of the hypothesis after observing the data

Hypothesis being true in bayesian probability depends on 2 criteria:
1. How sensible is it, based on the prior knowledge
2. How well the data fits the new evidence

Hypothesis are being tested against each other
Bayes factor = support for a hypothesis given the other
hypothesis
Not a posterior but you can use the factor to calculate the
posterior
Relative probabilities

Frequentists framework



2

, Probability of observing same or more extreme days given that the null is
true (p- value) (conditions on null hypothesis)

Definition of probability
Frequentists: probability is the relative frequency of events (formal)
Confidence intervals: I I were to repeat this experiment many times, 95%
of the intervals will include the true parameter value
Bayesian; probability is the degree of believe
(intuitive)
Credible interval: there is 95% that the true
value is in the credible interval

Lineair regression
Simple lineair regression (SLR);
Scatterplot for score of 2 variables
Y (hat) = B0 + B1X + e
Y (hat) = model
B0 = intersect (=cross with the y-ax)
B1 = slope (=how steep the line is)
e = residual (=error terms)
Multiple linear regression (MLR);
Scatterplot for scores of more then 2 variables
Y = B0 + B1 + B2 + …. + e (additive lineair model)

Model assumptions linear regression:
Serious violations lead to incorrect results
Sometimes easy solutions (deleting), sometimes it is hard (advanced
solutions presented in this course)

1. MLR assumes
interval/ratio
variables (outcome
and predictors)
MLR can handle
dummy variables
Dummy variabele has
0 and 1 (1=male, 0=female)




Evaluating lineair model
Frequentist statistic;
Estimate parameter of model
NHST if parameters are significantly non-zero




3
$6.59
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
ohuijsdens

Conoce al vendedor

Seller avatar
ohuijsdens Universiteit Utrecht
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
1 año
Número de seguidores
0
Documentos
2
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes