100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Structural design summary lecture notes

Puntuación
5.0
(1)
Vendido
7
Páginas
57
Subido en
12-04-2019
Escrito en
2017/2018

Detailed summary of the structural design part of the course 'Statics of Structures' (7P3X0). Questions and the answers to it after each chapter are also discussed in this summary.

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
12 de abril de 2019
Número de páginas
57
Escrito en
2017/2018
Tipo
Resumen

Temas

Vista previa del contenido

Chapter 1 – Introduction

Definition of a structure
 A structure is a physical system used to direct load from one place to another
 The following is important for a structure
o The structural systems used
o The structural materials that make these systems
o The forces acting on the structure
o The load-bearing subsurface the structure is placed upon

History of construction
 Pressure-based system: walls loaded in plane
o Materials: timber, natural stone and bricks (not able to withstand tension stresses)
o Ex.: Stonehenge
 Flooring structures
o Materials: wooden beams, arches and domes
 Pillars, B.C.
o Materials: marble blocks and wooden dowels
o Ex.: Structural simple Doric columns, slender Corinthian and Ionic Columns, Greek
architraves (monolithic stone beams), Roman arches and vaults
 Gothic style, 13th century
o Materials: pressure loaded timber and stone
o Ex.: flying and heavy buttresses to avoid tensile stresses
 Introduction of iron, 18th century
o Materials: structural material iron, can withstand tensile and compressive stresses
o Ex.: iron arch bridge over the Severn by Coalbrookdale
 Concrete material back into focus, 19th century
o Materials: concrete and steel for reinforcement
 In summary: In summary, in the course of history a shift occurred from the use of
compression systems to systems where compression and tension collaborate or only tension
is present. This evolution is related to the development of materials that are able to absorb
large tensile stresses and the need that exists to make larger spans.

Structural Systems
 A structural system is determined by the way it carries the loads, following systems are
distinguished

Structures loaded in compression
Vertical structures Columns Loaded according to their axis
Walls Loaded in plane
Spanning structures Arches Loaded according to their axis
Shells Loaded in plane
Structures loaded in tension
Vertical structures Tension columns Loaded according to their axis
Cables Loaded according to their axis
Spanning structures Cable structures Loaded according to their axis
Membrane structures Loaded in plan

, Structures loaded in bending
Vertical Structures Façade members Loaded perpendicular to their
axis
Walls Loaded perpendicular to plane
Spanning Structures Beams Loaded perpendicular to their
axis
Floors or plates Loaded perpendicular to plane
Portal frames
Assembly of columns and beams using a fixed connection


Structural materials
Structural materials distinction
 Natural materials
o Stone and timber
o Used for centuries, well known characteristics, variable quality, high material safety
factors
 Artificial produced materials
o Steel and aluminium-alloys
o Produced under controlled conditions, production subjected to inspections and
tests, consistent material, low material safety factors
o Concrete is an intermediate natural and artificial
 New materials
o Fibre reinforced composites
o Fully fabricated, behavior net yet fully understood, high material safety factors
 Old materials
o Wrought iron and cast iron
o Used to be applied in structures, now replaced by steel

Most applied materials
 Steel
o Iron with carbon and other additives
o S235, S275, S355 (s = steel, number = yield stress) = structural steel types
o FeB500 = rebar for reinforced concrete
o FEPI850 = used for cables and pre-stressed strands
 Concrete
o Cement, fine aggregates, course aggregates, water, 1:2:4
o C20/25 (characteristic cube compression strength 25 N/mm2)
o Made by hydration
o Brittle material, tensile strength 10% of compressive strength
 Timber
o Hardwood (deciduous = drops leaves)
o Softwood (coniferous = evergreen), grow faster so cheap and more used, C14
(coniferous 18 N/mm2 bending strength)
 Masonry
o Bricks: clay, waal-size, maas-size
o Natural stone
o Concrete blocks: cheapest building materials, solid or hollow

, o Calcium Silicate blocks: sand, cement, lime and water
 Aluminium
o Made from bauxite
o Lightweight, strong, corrosion resisting
o Energy consuming so twice as expensive as steel
o Made stronger by adding 5% other materials  alloys with low modulus of elasticity
and maximum allowable temperature
 Fibre reinforced composites
o Fibres (glass fibres, carbon fibres) and matrix (polyester, vinyl ester, epoxy)

Properties of Structural Materials
 Ideal structural material is lightweight, so the self-weight is small compared to total load
acting on it.
 Stress-Weight-Ration (SWR) = characteristic strength (kN/m2) / volumetric weight (kN/m3)
o Maximum allowable length can be determined
 Strength determines ultimate limit state (ULS) of structures
 Stiffness determines serviceability limit state (SLS) of the structure
 Sustainability, fatigue, toughness/brittleness, creep behavior, fire behavior, density, costs,
environmental impact




Structural Safety
 Structural safety
o The design load Sd = characteristic load Sk x load factor ys
o The design strength Rd = characteristic strength Rk / partial safety factor ym
o Structure is sufficiently safe if it meets the requirements:




 Design strength
o Follows from the strength function R of the design model. This model is based on
theoretical considerations and on observations of real behavior of structures during
tests.
o Material factors structural material
 Steel: Ym = 1
 Timber Ym = 1.2

,  Concrete: Ym = 1.40
 Stone = Ym = 1.80
 From an economic point of view it is not useful that every building has the same structural
safety. Therefore, reliability classes are determined.
o Reliability class 1: structures in which no people are present during extremely bad
weather
 Ex.: greenhouses
o Reliability class 3: structures that will not only give great financial impact if collapsed
but also large human, emotional or social damage
 Ex.: residential buildings, office buildings, bridges and power plants
o Reliability class 2: applies to all structures not in classed 1 or 3
 Ex.: single family houses

Loads
 Eurocode describes all load cases that should be taken into account. Consist of 10 volumes.
o What is the characteristic value of the live load? Should the calculation include a thick
or thin layer of snow?
o Which loads should be taken into account in a load combinations and to what extent?
 Types of loading
o Permanent loads (G): vary little in time
 Ex.: Self-weight, ground pressure, loads by fluids in storage tanks
o Variable (live) loads (Q): vary in time in size
 Qm instantaneous / quasi-permanent (kN/m2)= almost always, follows from
statistical distribution
 Qrep extreme load (kN) = extreme value of variable load, once in 50 years
 Ψ = ratio between instantenous value and extreme value
 Ex.: Wind, people, furniture, decorations, rain
o Accidental loads (Fa): large and disastrous consequences, low probability of
occurrence
 Ex: gas explosion, fire, collusion of vehicles, earthquakes
 Design load Sd = characteristic load Sk x load factor ys
o Load factors for reliability class 3




 Load combinations in accordance to Eurocode I
$7.26
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Reseñas de compradores verificados

Se muestran los comentarios
5 año hace

5.0

1 reseñas

5
1
4
0
3
0
2
0
1
0
Reseñas confiables sobre Stuvia

Todas las reseñas las realizan usuarios reales de Stuvia después de compras verificadas.

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
lenaeindhoven Technische Universiteit Eindhoven
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
10
Miembro desde
6 año
Número de seguidores
9
Documentos
4
Última venta
2 año hace

5.0

1 reseñas

5
1
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes