100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary of management research methods 2

Puntuación
-
Vendido
-
Páginas
43
Subido en
09-04-2024
Escrito en
2023/2024

This summary provides all the knowledge needed for the exam of management research methods 2 at the University of Amsterdam (6612ZB016Y)

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
9 de abril de 2024
Número de páginas
43
Escrito en
2023/2024
Tipo
Resumen

Temas

Vista previa del contenido

Management Research Methods 2 for Accountancy & Control

Week 1: Conceptual models & ANOVA

Variables we use:
- Outcome variable (OV) / Dependent variable (DV): variable to be explained.
- Predictor variable (PV) / Independent variable (IV); Variable that explains.

The p-value stands for the probability of obtaining a result (or test-statistic value).
If the P-value is <0.05, it means we need to reject H0.

Conceptual models:
Conceptual models help to visualize your research question and to build the hypothesis.
It is a visual representation of relations between theoretical constructs (variables) of
interest.

In research: by “model” we mean a simplified description of reality.

Variables can have different measurement scales:
- Categorical (binary, nominal, ordinal)
- Quantitative (discrete, interval, ratio)

Conceptual models: moderation
Moderating variables (or moderators): These alter the effect that an independent variable
has on a dependent variable. In other words, moderators change the “effect” component of
the cause-and-effect relationship.

For example:

RQ: What is the effect of a teacher’s commitment on student satisfaction, and how is this
relationship moderated by a teacher's communication skills?




H0: A teacher’s communication skills will not influence the relationship between the
commitment of the teacher and student satisfaction.

Ha: Teachers who are more committed will increase the satisfaction level of students,
but only when they have good communication skills.

, “Communication skills” is a moderation variable in this example. It moderates the
relationship between the main PV on the OV.

Conceptual models: mediation
Mediating variables (or mediator): Explains the process through which two variables are
related. A mediator is a way in which an independent variable impacts a dependent variable.
It’s part of the causal pathway of an effect, and it tells you how or why an effect takes place.

For example:

RQ: What underlying mechanism drives the effect of teacher’s commitment on student
satisfaction?




H0: The effect of teacher’s commitments on student satisfaction is not mediated by the
quality of the course material)

Ha: The positive effect of a teacher’s commitment on student satisfaction is mediated by the
quality of the course material.

“Lecture slide quality” is a mediating variable in this example. It mediates the relationship
between two other variables.

ANOVA:
With the ANOVA test, you can investigate with a certain level of (statistical) confidence, what
differences there might be between groups. It compares the variability between groups,
against the variability within groups. (Does it matter in which group you are?)

ANOVA/Analysis of variance:
- Statistically examines how much of the variability in our outcome variable can be
explained by our predictor variable.
- Outcome Variable (OV) = Quantitative
- Predictor Variable (PV) = Categorical with more than 2 groups.

,Assumptions:
- Variance is homogenous across groups (Levene’s test).
- Our subjects can only be in one group (Depedent).
- Group sizes need to be equal.

Example:
RQ: Is there a relation between shopping platform and customer satisfaction?




PV = Shopping platform (Categorical with three levels: 1-Brick-and-mortar store 2-web shop
3- Reseller).
OV = Customer satisfaction (Quantitative: score from 1-50).

SSr -Total variance in the data:




SSm: Model sum of squares:

, SSR: Residual sum of squares:




The total sum of squares:




1992.10 = 1140.68 + 51.42

Now we have this data, we can calculate the proportion of the total variance in our data that
is “explained” by our model.  R2 (R squared)
$9.01
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
femkevanembden Hanzehogeschool Groningen
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
28
Miembro desde
4 año
Número de seguidores
21
Documentos
16
Última venta
4 meses hace

3.7

3 reseñas

5
1
4
1
3
0
2
1
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes