100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary lectures 1BM110 Data Driven AI

Puntuación
-
Vendido
1
Páginas
59
Subido en
07-04-2024
Escrito en
2023/2024

This document consists of a summary of all lectures of the course 1BM110. The perfect exam preparation!

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
7 de abril de 2024
Número de páginas
59
Escrito en
2023/2024
Tipo
Resumen

Temas

Vista previa del contenido

Data-Driven Artificial Intelligence
Lecture 1: Introduction
AI breakthroughs
- 2016: AlphaGo beats Go master Lee Se-dol
- 2021: Dall-E: creating images from text, e.g. type in “an oil pastel drawing
of an annoyed cat in a spaceship”
- 2022: ChatGPT: ask any question

The hype curve on AI 2023




Power of data
Data flood
- 1000 MB = 1 gigabyte (GB) 1000 GB = 1 terabyte (TB)
- 1000 TB = 1 petabyte (PB) 1000 PB = 1 exabyte (EB)
- 1000 EB = 1 zettabyte (ZB) 1000 ZB = 1 yottabyte (YB)

Big data
- Volume: quantity of generated and stored data
- Variety: type and nature of the data
- Velocity: speed at which the data is generated and
processed

AI and big data drive the 4th Industrial Revolution




Business decisions:
- Almost all activities in running businesses involve decision making: main
task of managers
- Decision analysis for dealing with the decision problems in a structured
way: studied for a long time in business research (decision support
systems)
Business intelligence is composed of methods that enhance efficiency and
facilitate decision making by integrating information and processes with the use
of tools that transform data into useful and actionable knowledge.

,  From data to information to knowledge

Business intelligence and decision support
- Conventional decision support: emphasis on
deduction
- Business intelligence: emphasis on
induction
- BI: data-driven (AI) decision support

Degree of intelligence (this course focus: descriptive and predictive)
- Descriptive analytics: uses data to understand past and current
business performance
o Answers questions: what has occurred? How much did we sell in
each region? What type of customer she is (regarding return
behavior)?
o Techniques and methods:
 Reporting, summarization, visualization
 Segmentation: clustering, associate rule
- Predictive analytics: analyses past performance to predict the future;
what will occur?
o Answers questions: how much we will sell in each region?
o Techniques and methods:
 Regression and classification
 Text mining/natural language processing
- Prescriptive analytics: identifies the best alternatives to minimize or
maximize some objective: what should occur?
o Answers questions: how much should we produce to maximize
profit?
o Techniques and methods:
 Mainly optimization techniques: mathematical optimization
models; heuristics

The human factor becomes less important.
 Some risks should be taken seriously.
Just because something can be
measured doesn’t mean that it should
be measured.

The EU approach to AI is human centric.
 7 requirements for trustworthy AI: human agency and oversight,
robustness and safety, privacy and data governance, transparency,
diversity/non-discrimination/fairness, societal and environmental well-
being, accountability

The EU Act regulates AI applications.




The five tribes of AI

,There is no clear consensus on the definition of AI. Russell & Norvig: a program
that:
- Acts like human
- Thinks like human (human-like patterns of thinking steps)
- Acts or thinks rationally (logically, correctly)

Master algorithm hypothesis: “all knowledge – past, present and future – can
be derived from data by a single, universal learning algorithm”.

The five tribes
Tribe Origin Master Strength Methods/
Algorithm technology
Symbolists Logic, Inverse Structure inference Inverse
philosophy deduction deduction,
reasoning
Connection Neuroscien Back- Estimating Back-propagation,
sits ce propagation parameters deep learning
Evolutionari Biology Evolutionary Structure learning Evolutionary
es algorithms algorithms
Bayesian Statistics Probabilistic Weighing evidence HMM, graphical
inference models
Analogizers Psychology Kernel Mapping to new kNN, SVM, …
machines instances

Symbolic AI
- Often referred to good old-fashioned AI, dominant AI school in 1970s,
1980s
- Many aspects of intelligence achieved by manipulation of symbols and
symbolic solvers
- Identifying and extracting regularities
o Propositional logic
o Rules form: A implies B
- Deductive reasoning: the process of drawing deductive
inferences
o An inference is valid if its conclusion follows logically from
its premises
- Inverse reasoning (induction): identifying missing components
that block deductive reasoning
o New knowledge created through generalization
- Applications: expert systems, automated theorem provers, ontologies,
automated planning and scheduling systems

Connectionist AI
- What the brain does is learning;
knowledge is stored in connections
between neuros
- The dominant tribe today!

Evolutionary AI: learning is about
natural selection

,  In 1975, John Henry Holland wrote the ground-breaking book on genetic
algorithms: “Adaption in Natural and Artificial systems”
Bayesian AI: learning is uncertain inference (challenge: dealing with noisy,
incomplete information)
 Bayes’ theorem tells us how to update our beliefs in light of
new evidence


Analogy-based AI: learning is about
recognizing similarities



Data pre-processing
CRISP-DM framework: cross-industry
standard process for data mining
1. Business understanding
2. Data understanding
3. Data preparation
4. Modeling
5. Evaluation
6. Deployment

Data understanding: descriptive analytics
- Basic statistical descriptions of data
- Data visualization

Data preparation consists of the following four tasks:
1. Data integration
2. Data cleaning
3. Data reduction
4. Data transformation & discretization

Data integration:
- Example: six different databases used
for data collection -> Order
Management System (OMS), Orders,
Customers, Early Customer Solution
(ECS), Products, Transaction Margin
- Data source problems:
o Different original purpose
o Different database schemas
o Different information detail/granularity
o Different data semantics
o Different file formats
- Solutions:
o Scheme mapping
o Conversion into standards (e.g. MySQL, RDF triples, XML schemas)
o Creation of new schema & vocabulary (e.g. for variable names)
- Challenges:
$7.77
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
juliajjn Technische Universiteit Eindhoven
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
218
Miembro desde
5 año
Número de seguidores
186
Documentos
23
Última venta
1 mes hace

4.3

29 reseñas

5
13
4
13
3
2
2
0
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes