100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

MAM1021S Lecture Notes Summary

Puntuación
-
Vendido
-
Páginas
187
Subido en
04-04-2024
Escrito en
2022/2023

These notes, taken for Mathematics 1B for Engineers (MAM1021S), serve as a comprehensive resource for the course. They are compiled from both in-class lectures and provided notes from the instructor. The content is structured in a sequential manner, covering the entire syllabus of the course. These notes offer concise summaries of key mathematical topics, along with worked examples to solidify understanding. They are invaluable tools for preparing for tests and exams.

Mostrar más Leer menos
Institución
Grado

















Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
4 de abril de 2024
Número de páginas
187
Escrito en
2022/2023
Tipo
Notas de lectura
Profesor(es)
T van heerden
Contiene
Todas las clases

Temas

Vista previa del contenido

Maths notes
Semester 2

, me
Integrals
imme
Review of Integration

An ANTIDERIVATIVE of f is a function F

>
such that -


dx
(F(x)] =
f(x)

The INDEFINITE INTEGRAL of f is the infinite

family of antiderivatives F(x) + C




(f(x)dx =
f(x) + C




The DEFINITE INTEGRAL of f from a to ↳

is the
signed bounded
by c= x b
=
area a
;
y
=

f(x) ; y
=
0


1




I'll a




Area-lim f(x, &x
n+ 0k = 1




This evaluated the FTC
can be
using

Area =
"f(x) dx
=

F(b) -


F(c)
E

, imme
Review of Integration
EX

5x
.




fxdx = + C




jxdx [5 1·
3
=
x + C


I =

5(2) + -

(5(k Fe)
=

E

meet
Integration by Substitution

Ex .

[20c . cos(s) dx LET x =
u




=

a
Scos(u) -




↳ CHAIN RULE
=

Scos(u) du



=
sin(u) + C
:
sin(x) + C




* CHAIN RULE :




Scos(u) dxc =
/ [sin (2)] o
e




=> (sin(u)] (u
dx
=
sin

, meet
Integration by Substitution
I 2
EX -
- x


S >c2 dx let u
= -
x

au=
O
value of u

- A change


S -
-C ·
"oc du


s
-
dx
=
Is
- du



- -Je
-
I

-F(c I
U

au
=
-


O
O

-
=



H -

el
-
=


E(t -


1)


Ex .
Soc Vect2 do let V =
x + 2

A - I

It
Sx
= an dx


du =
doc
I
2)
S(v ~ av
-
=




=
Sve -zu av
-

z -A + C


-


E(x
+ 2) -


(x+ 2) + c

, immense
Integration by Parts

Product rule
(fg)' =

fg +
fg)
d
fg =

(f'gax +
Sfg'dx
=>
Sf'gdx =

fg-Sfg'dx * FORMULA




6
Ex .
(xc .
cos(oc) doc

↑ ↑
9 >
-




g =
1 f =
since



=
xsin(x) /sinx I
-


.
do



=
xsin(x) +
cosx + C -
ADD + C WHEN No


MORE
S
!!! CHECK




[xsinxc + cosx + c]
=

Six + inx !!!
=
xCossa occosoc # SAME

, immense
Integration by Parts
IF ...




So cosoc doc

↓ ↓

- 9


-x g'
&

- = =
-sino




= Cossa +
Sjxsinx dx


-
MORE COMPLEX THAN

ORIGINAL



DO OTHER WAY



Ex
.
Sarctan (c). I doc

↓ >
- add x 1 B MUST

g MAKE FI

g' =



1 +
I

x
>
- = xC




=
Sarctan(x) -J x 1 +
doc




-5) The
2
=
arcton u =
1 + 0
x .
(c) -

- = Zoc

=
xc .
arcton(x) -[Inful + C daC


=
arctan(x) (n)1 + C
x =
+
x . -
+ x

, imme
Integration by Parts
3t


S
2

Ex .
t e


O d d

g
-' g' =
2t f =
523t
want
MAKE SIMPLER



=

[5 rest] !
+
-


=teat

>
- Do IBP AGAIN

g
O


fl


g 2 =
== 5
- -

0 -




[te't' Ect g
at


=+
* /estjo
3
-
+
3
O




-ja - -

, mens
Integrals with Trig functions

Stasc f f

-

Cos sins COSOC

sinx COSOC -
sinoc
-


In(cosod tanoc seco
? seco secoctanx




TRIG IDENTITIES
cos2 x + sin2 x
= I

sin 2x =
asinkcoss

cos2x = 1 -Isin2x = 2cos - I

1 + tan(x) =
Seco


Ex .

[secos doc


secx + tanx
=
x
sec
Seco + tans




&Seco
+ Secostanza
=
do let u =
Seco + tand
Secoct fansc
du = Secostano + seco
du doc


S -
= dx
*
u



=

Stau =
(n(u) + C
=
In/secx + tanxl + C

, mens
Integrals with Trig functions
Ex .

/sinGcosodo let u = sin O



=
cost

Su
=




=
sin C




Ex .

(secit)ton(t) de let u
=
Sec(t)
n -
sec(t)tcn(t)
=

Su
-
dt


=
↳ us + C


=
-se(t) + c




Ex
.
(cos(0) do * cos20 =
2 coo -
I

Cos20 + 1 =
cosO
= (cos (20) + 1 do Z




-
(tsin(20) + 0) + C


-
* sin(20) +
4 + C

, mens
Integrals with Trig functions

Ex .




[sin 0 cos'6 ao

-
u =



=
sin O

CosO =
I
du
-2
3 I
Sus COSO
=

cos O do dO
COS O
-


Su (1 Sus-
7
=>
-

sir 8) du
=
u du



-jut -**
I
+
C


-sin'o -Tsin8 + C


We can use this whenever we want to


[sin" (0). cos" (8)
integrate 90 B p or
q
is Odd




Ex .


(sin" (x) .
cos" (3) as


*
sin" (c)
S . . cos(c)
(x)
=
cos dx


=

(sin "(x)
*

. (cos"(x))" . cos(o) do



=

S sin" (x). (1 -
sinpcl)". cos() doc



let u =
sin(x) = cossc



=

S 434(1 -
12)"du
$12.26
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
elizabeth6666
3.0
(1)

Conoce al vendedor

Seller avatar
elizabeth6666 University of Cape Town
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
8
Miembro desde
4 año
Número de seguidores
6
Documentos
6
Última venta
8 meses hace

3.0

1 reseñas

5
0
4
0
3
1
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes