100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Samenvatting tentamenstof Statistische Modellen 2

Puntuación
3.0
(1)
Vendido
10
Páginas
31
Subido en
24-03-2024
Escrito en
2023/2024

Samenvatting van alle tentamenstof van statistische modellen 2. De samenvatting is aangevuld met de belangrijkste hoofdzaken uit de colleges.

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

¿Un libro?
No
¿Qué capítulos están resumidos?
7.3, 7.4, h9, 10.1, 10.2, 10.3, 10.4, h11, h12, 13.1, 13.2, 13.3, 13.4, 14.2, 14.3, 15.1, 15.2, 15.3
Subido en
24 de marzo de 2024
Número de páginas
31
Escrito en
2023/2024
Tipo
Resumen

Temas

Vista previa del contenido

Samenvatting statistische modellen 2

,Hoofdstuk 7 vergelijking van twee groepen
7.3 kwantitatieve data: vergelijken van twee gemiddeldes
We vergelijken twee populatie gemiddeldes bij het maken van gevolgtrekkingen over hun verschillen.

Voor grote of kleine willekeurige steekproeven die normale populatieverdelingen vormen, heeft de
steekproevenverdeling van (ȳ2 - ȳ1) een normale vorm. Je moet wel letten op uitbijters die het
gemiddelde kunnen beïnvloeden.

Het betrouwbaarheidsinterval is voor het bovengenoemde (ȳ2 -ȳ1) ± t(se) waarbij SE=
De t-score wordt gekozen waarmee het gewenste betrouwbaarheidsinterval wordt
bereikt, bijvoorbeeld bij 95% een t-score van 1.96.

Wanneer je dan het betrouwbaarheidsinterval berekend heb kun je dat als volgt interpreteren:
bijvoorbeeld je hebt een 95% bhi met de waardes (2.4 – 4.8) dan verwacht je dat 95% van de tijd de
waarden die je vindt tussen de waardes van 2.4 en 4.8 liggen.

Ook kun je een significante test gebruiken om populatie gemiddeldes te vergelijken. Dit kan met de
volgende formule:
T= (schatting parameter – waarde nulhypothese van de parameter) / standaard error van de
schatting.

waarbij SE =



7.4 vergelijken van gemiddeldes met afhankelijke steekproef
Matched pairs: participanten in de steekproef worden gematcht aan de hand van een variabele,
bijvoorbeeld IQ. Hiervan komt dan één persoon in de steekproef en de andere in de controlegroep.

Voor gepaarde metingen is het verschil tussen de gemiddeldes van de twee groepen is gelijk aan het
gemiddelde van de verschillende scores.

T-statistic voor gepaarde metingen: met

Gepaarde metingen maken gebruik van de gebruikelijke aannames voor t-procedures:
- Waarnemingen worden willekeurig verkregen uit een populatieverdeling die normaal is.
- Betrouwbaarheidsintervallen en tweezijdige testen zijn geldig, ook als de
normaliteitsaanname geschonden wordt (behalve als de steekproef heel klein of heel scheef
is of uitbuiters bevat).

Het gebruiken van afhankelijke steekproeven kan voordelen hebben:
- Variabelen worden onder controle gehouden, bijvoorbeeld als je onderzoek doet waarbij in
beide groepen mensen met dezelfde leeftijd zitten dan kan het verschil tussen die twee
groepen niet ontstaan door leeftijd.
- De standaarderror tussen de twee gemiddeldes van beide groepen is kleiner.
Bij een onafhankelijke steekproef heb je de variabelen minder onder controle waardoor de
standaarderror ook groter zal zijn.

,Hoofdstuk 9 lineaire regressie en correlatie
9.1 lineaire relaties
Variabele x = onafhankelijke variabele
Variabele y = afhankelijke variabele
In onderzoek analyseer je hoe waardes van y invloed hebben op verandering van variabele x.
De onafhankelijke variabele beïnvloedt de afhankelijke variabele.

Categorische variabelen kun je x en y met elkaar vergelijken in een tabel.
Kwantitatieve variabelen worden beschreven met een formule waarin beschreven wordt hoe y zich
verhoudt tot x.

Lineaire functie: y=ax+b  model voor relatie tussen twee kwantitatieve variabelen.
- b= intercept: het snijpunt met de y-as (waarde van y als x 0 is).
- a= helling: geeft steilheid van de lijn aan.
a en b worden ook wel regressie coëfficiënten genoemd.

Positieve relatie: y neemt af als x toeneemt.
Constante relatie: variabele y is constant en verandert niet als x verandert.
Negatieve relatie: y neemt toe als x afneemt.




Positief constant negatief

9.2 voorspellen met de kleinste kwadratensom
Allereerst maak je een spreidingsdiagram van je gevonden data. Hierin kun je zien of lineaire
regressie gebruikt kan worden (is er een rechte lijn te trekken?).

Als je in het diagram een outlier hebt (punt dat ver afwijkt van de andere punten), dan wordt dat een
regressie outlier genoemd. Vaak kan dat veel invloed hebben op de lijn die je erdoor trekt. De outlier
laat je dan ook vaak achterwege.

Residuen: het verschil tussen een geobserveerde waarde en verwachte waarde op basis van de
formule voor lineaire regressie. Hoe kleiner het residu, hoe beter de schatting is.
- Positieve residu: de geobserveerde waarde van y is groter dan de geschatte.
- Negatieve residu: de geobserveerde waarde van y is kleiner dan de geschatte.

de lijn ligt op de plek waar alle afstanden (punten) tot de lijn het
kleinste zijn. Alleen de lijn y=ax+b maakt dit mogelijk.

De lijn ontstaat met de kleinste kwadratensom. Eerst reken je alle
residuen uit, dan kwadrateer je ze en telt ze bij elkaar op.

, 9.3 lineair regressiemodel
De formule y=a+bx geeft een deterministisch model weer: bij elke x-waarde hoort eenzelfde y-
waarde. Dat is in de praktijk niet zo. Stel je voor x is het aantal jaren onderwijs en y het inkomen. Niet
iedereen met 12 jaar onderwijs (x) heeft een inkomen van 30.000 euro.
Daarom wordt de formule veranderd naar E(y)=a+b(x)  conditionele distributie waarmee het
gemiddelde van y voorspelt wordt.

Het lineaire regressiemodel heeft een parameter, namelijk σ. Deze beschrijft de standaard afwijking
van elke conditionele distributie. Het meet de variabiliteit van de y-waarden voor alle personen met
die bepaalde x-waarde. We noemen σ de conditionele standaarddeviatie. Omdat je de echte
standaardafwijking niet weet, gebruik je die uit de steekproef: mean square error.

9.4 de correlatie
Met alleen de helling kan je niet de sterkte vertellen tussen de twee variabelen. Wel is de helling te
gebruiken om aan te geven of er een lineaire relatie is tussen de variabelen.

Hoe sterk een verband tussen x en y is kun je aantonen met de Pearson correlatie (r). Kenmerken
zijn:
- Maat voor sterkte lineaire relaties. Dus in hoeverre de twee variabelen elkaar beïnvloeden.
- Je kunt het alleen gebruiken wanneer een lineair verband zinvol is.
- De waarde valt altijd tussen 1 en -1.
- ‘r’ is positief/negatief gelijk aan ‘b’. Als ‘b’ positief is (en er een positief verband is) is ‘r’ ook
positief en als ‘b’ negatief is (en er een negatief verband is) is ‘r’ ook negatief.
- Hoe groter de correlatie, hoe dichterbij alle punten op de lijn liggen  hoe sterker het
lineaire verband.




Kwadraat van de correlatie: gemeenschappelijke variantie tussen variabelen. Het geeft aan hoe goed
y voorspeld kan worden door x. Je meet met het kwadraat van de correlatie de sterkte van het
lineaire verband. De waarden vallen tussen 0 en 1. Hoe dichter de waarde bij 1, hoe sterker het
verband tussen x en y is.
- Hoge R2:
o Veel kleine residuen (alle punten liggen dichtbij de lijn)
o Hoge correlatie
o Veel verklaarde variantie (correlatie tussen x en y).
$9.05
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Reseñas de compradores verificados

Se muestran los comentarios
1 año hace

3.0

1 reseñas

5
0
4
0
3
1
2
0
1
0
Reseñas confiables sobre Stuvia

Todas las reseñas las realizan usuarios reales de Stuvia después de compras verificadas.

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
vkroeze Rijksuniversiteit Groningen
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
66
Miembro desde
4 año
Número de seguidores
38
Documentos
18
Última venta
2 horas hace

3.0

5 reseñas

5
1
4
1
3
1
2
1
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes