100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

Introduction to Statistics (Lecture Notes)

Puntuación
-
Vendido
1
Páginas
21
Subido en
24-02-2024
Escrito en
2021/2022

Notes on the live lectures for the course Introduction to Statistics. Contains explanations and solutions for the problems presented during the lectures. Covers important exercises which are likely to come up on the exam.

Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
24 de febrero de 2024
Número de páginas
21
Escrito en
2021/2022
Tipo
Notas de lectura
Profesor(es)
Bennett kleinberg
Contiene
Todas las clases

Temas

Vista previa del contenido

STATISTICS – LECTURE NOTES
CHAPTER 1 & 2
֎ why do we need statistics?
- to see the real data and analyze them in order to come to conclusions about some
concepts
- to handle and interpret data so that we can gain knowledge from them
- intuition  evidence-based decision making
- to help with making well-informed decision
- we are bombarded with statistics everywhere and we need to make sense out of these
numbers and statistics is the only way to make sense of these figures
- the statistics is fundamentally about uncertainty
- difference between mathematics and statistics: statistics are about things which cannot
be fully calculated, mathematics are more concrete
- sampling: core part of statistics
֎ stem and leaf plot – a way to represent data
- gives structure to the data
- we look at the decimal
ex. on a scale of 1-100, how do you feel?
- different scores are organized
0
1 798845
2 92
3 1
4 8
5 3
6 2
7 13572
8
9 2
10
- the stem and leaf plot is derived from the
scores and the numbers are seen as 17,19,18, 29, 31, 48…
- 0 = 1-9 ; 1 = 10-19 ; 2 = 20-29 ; 3 = 30-39 …

stem and leaf plots give a distribution of the data – that is the main idea of stem and
leaf (that’s why we flip it to the side)
uniformly distributed data will be falsely presented if we omit some sets of observations
(even if there are no scores, they should be included – in this example 3, 4 ,5)

,֎ N – population ; n –sample
֎ the inferences we make are about a hypothetical population (people who live, who are
about to be born, who have lived) ; the entire population cannot be tested
- this is why we always use sampling
- conclusions are based on sample statistics
֎ example: how often have you moved house?
we have data responses data responses
- we build a frequency table – we have values, which are the reported scores
X – all the options people could give
f – frequency of the answers

X f % cumulative %
0 19 19/200 x 100% = 9.50 9.50
1 11 5.50 15.00 (9.50 + 5.50)
2 40 20.00 35.00
3 50 25.00 60.00
4 30 15.00 75.00
5 30 15.00 90.00
6 20 10.00 100.00
200

what is the percentile rank of having moved 4 times = 75% (looking at the cumulative %)
- if you have moved more than 4 times, you have moved more often than 75% of the
population
֎ height in cm – a midpoint of an interval
ex. 180 cm – corresponds to an interval (has lower and upper limits)
- there could be multiple values which fir into this interval

, the next decimal place determines the intervals
֎ question 2.10
X f cumulative %
20-24 2 100
15-19 3 90
10-14 3 75
5-9 10 60
0-4 2 10
what is the cumulative percentile rank for the value of X = 9.0?
we are talking about intervals so we are talking about the intervals of 0-4/ 5-9
X c%
5-9 60
-the upper real limit is 9.5

0-4 10
- the upper real limit is 4.5
first step: how many points do we need to go down from 9.5 to reach 9?
answer: 0.5
the whole interval has a size of 5
we create a fraction = 0.5/5 = 0.1 (point of
interest)
we need to go 0.1 = 10% down to reach 9
50 x 0.1 = 5
60 – 5 = 55%
therefore, the value of 9 corresponds to 55%
percentile rank
50 is the size of the interval of cumulative
percentages

CHAPTERS 3 & 4
 central tendency of data – expresses info about the average of the data
 variability (spread of data)
 data as distributions
- histogram – expresses the frequency and scores
$6.28
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
anniedeshkova Tilburg University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
22
Miembro desde
1 año
Número de seguidores
10
Documentos
13
Última venta
4 meses hace

4.3

6 reseñas

5
3
4
2
3
1
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes