100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

SOLUTIONS MANUAL for Control Systems Engineering 7th Edition by Norman Nise. ISBN 9781118800638

Puntuación
-
Vendido
-
Páginas
9
Grado
A+
Subido en
14-02-2024
Escrito en
2023/2024

SOLUTIONS MANUAL for Control Systems Engineering 7th Edition by Norman Nise. ISBN 9781118800638 Trapezoid = 31.516 Use the trapezoid rule with n = 4 to approximate the area between the curve f(x) = x^3 -x and the x-axis from x = 3 to x =7ANS-Trapezoid = (1/2)(1)[(3^3 -3) +2(4^3 -4) +2(5^3 -5) +2(6^3 -6) +(7^3 -7)] Trapezoid = 570 Use the trapezoid rule with n = 4 to approximate the area between the curve f(x) = x^2 + 1 and the x-axis from x = 3 to x =7ANSTrapezoid = (1/2)(1)[(3^2 +1) +2(4^2 +1) +2(5^2 +1) +2(6^2 +1) +(7^2 +1)] Trapezoid = 110 Use the trapezoid rule with n = 6 to approximate the area between the curve f(x) = 3x^3 - 4 and the x-axis from x = 0 to x =6ANSTrapezoid = (1/2)(1)[(3(0^3) - 4) + 2(3(1^3) - 4) + 2(3(2^3) - 4) + 2(3(3^3) - 4) + 2(3(4^3) - 4) + 2(3(5^3) - 4) + (3(6^3) - 4)] Trapezoid = 975 Use the trapezoid rule with n = 4 to approximate the area between the curve f(x) = 2x^3 - 1 and the x-axis from x = 2 to x =6ANSTrapezoid = (1/2)(1)[(2(2^3)-1) +2(2(3^3)-1) +2(2(4^3)-1) +(2(5^3)-1) +(2(6^3)-1)] Trapezoid = 527.5 Find the area of the polar equation r = 4cos θANS-A = (1/2) ∫(4cos θ)^2dθ from [0, 2pi] plug into calculator A = 8pi + 8sin(pi) Find the area inside the first curve R = 2 + sin θ and outside the second curve r = 3sin θANS-Find the positions of intersection by setting the equations equal to each other and solving for θ. Find the midpoint Riemann Sum of cos(x^2) with n = 4, from [0, 2]ANS-Mid S4 = (1)(1/2)[cos(.25^2) + cos(.75^2) + cos(1.25^2) + cos(1.75^2) Mid S4 = (1)(1/2)[cos(.625) + cos(.5625) + cos(1.5625) cos(3.0625)]Mid S4 = .824 If the function f is continuous for all real numbers and if f(x) = (x^2-7x +12)/(x -4) when x ≠ 4 then f(4) =ANS-Factor numerator so f(x) = (x-3)(x-4)/(x-4) = x-3 f(4)=4-3 f(4) = 1 If f(x) = (x^2+5) if x < 2, & f(x) = (7x -5) if x ≥ 2 for all real numbers x, which of the following must be true? I. f(x) is continuous everywhere. II. f(x) is differentiable everywhere. III. f(x) has a local minimum at x = 2.ANS-At f(2) both the upper and lower piece of the discontinuity is 9 so the function is continuous everywhere. At f'(2) the upper piece is 4 and lower piece is 7 so f(x) is not differentiable everywhere. Since the slopes of the function on the left and right are both positive the function cannot have a local minimum or maximum at x= 2. Only I is true. For the function f(x) = (ax^3-6x), if x ≤ 1, & f(x) = (bx^2+4), x > 1 to be continuous and differentiable, a = .....ANS2. lim from the left and right are both 8 3. lim f(x) as x approaches 4 is 8 which equals f(4) for the function to be continuous f(1) has to equal f(1): a(1^3) -6(1) = b(1^2) +4 a -6 = b +4 b=a-10 for the functions to be differentiable f'(1) has to equal f'(1): 3a(1^2) -6 = 2b(1) 3a -6 = 2b plug b from the first equation in to find a: 3a -6 = 2(a -10) a = -14 Find k if f(x) = (k) at x = 4 and f(x) = ((x^2 -16)/(x-4))ANS-1. f(4) exists and is equal to 8 k must equal 8 If f(x) is continuous and differentiable and f(x) = (ax^4 +5x) for x ≤ 2, & f(x)= (bx^2 -3) for x > 2 , then b =...ANS-Plug x = 2 into both pieces. f(x) = (16a +10) for x ≤ 2, & (4b -6) for x > 2 They must be equal to be continuous 16a +10 = 4b -6 a=.25b-1 Take the derivative of both pieces of this function and plug in x = 2 f(x) = (32a +5) for x ≤ 2, & f(x) = (4b -3) for x > 2 They must be equal to be differentiable 32a +5 = 4b -3 plug in the first equation to find b 32(.25b-1)+5= 4b-3

Mostrar más Leer menos
Institución
Systems Engineering
Grado
Systems Engineering









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Systems Engineering
Grado
Systems Engineering

Información del documento

Subido en
14 de febrero de 2024
Número de páginas
9
Escrito en
2023/2024
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

SOLUTIONS MANUAL for
Control Systems Engineering
7th Edition by Norman Nise.
ISBN 9781118800638
Trapezoid = 31.516

Use the trapezoid rule with n = 4 to approximate the area between
the curve f(x) = x^3 -x and the x-axis from x = 3 to x =7ANS-Trapezoid
= (1/2)(1)[(3^3 -3) +2(4^3 -4) +2(5^3 -5) +2(6^3 -6) +(7^3 -7)]

Trapezoid = 570

Use the trapezoid rule with n = 4 to approximate the area between
the curve f(x) = x^2 + 1 and the x-axis from x = 3 to x =7ANS-
Trapezoid = (1/2)(1)[(3^2 +1) +2(4^2 +1) +2(5^2 +1) +2(6^2 +1) +(7^2
+1)]

Trapezoid = 110

Use the trapezoid rule with n = 6 to approximate the area between
the curve f(x) = 3x^3 - 4 and the x-axis from x = 0 to x =6ANS-
Trapezoid = (1/2)(1)[(3(0^3) - 4) + 2(3(1^3) - 4) + 2(3(2^3) - 4) +
2(3(3^3) - 4) + 2(3(4^3) - 4) + 2(3(5^3) - 4) + (3(6^3) - 4)]

Trapezoid = 975

Use the trapezoid rule with n = 4 to approximate the area between
the curve f(x) = 2x^3 - 1 and the x-axis from x = 2 to x =6ANS-
Trapezoid = (1/2)(1)[(2(2^3)-1) +2(2(3^3)-1) +2(2(4^3)-1) +(2(5^3)-1)
+(2(6^3)-1)]

, Trapezoid = 527.5

Find the area of the polar equation
r = 4cos θANS-A = (1/2) ∫(4cos θ)^2dθ from [0, 2pi]

plug into calculator

A = 8pi + 8sin(pi)

Find the area inside the first curve R = 2 + sin θ and outside the
second curve r = 3sin θANS-Find the positions of intersection by
setting the equations equal to each other and solving for θ.



Find the midpoint Riemann Sum of cos(x^2) with n = 4, from [0,
2]ANS-Mid S4 = (1)(1/2)[cos(.25^2) + cos(.75^2) + cos(1.25^2) +
cos(1.75^2)
Mid S4 = (1)(1/2)[cos(.625) + cos(.5625) + cos(1.5625)
cos(3.0625)]Mid S4 = .824

If the function f is continuous for all real numbers and if f(x) = (x^2-7x
+12)/(x -4) when x ≠ 4 then f(4) =ANS-Factor numerator so
f(x) = (x-3)(x-4)/(x-4) = x-3
f(4)=4-3
f(4) = 1

If f(x) = (x^2+5) if x < 2, & f(x) = (7x -5) if x ≥ 2 for all real numbers x,
which of the following must be true?

I. f(x) is continuous everywhere.
II. f(x) is differentiable everywhere.
III. f(x) has a local minimum at x = 2.ANS-At f(2) both the upper and
lower piece of the discontinuity is 9 so the function is continuous
everywhere.

At f'(2) the upper piece is 4 and lower piece is 7 so f(x) is not
differentiable everywhere.
$17.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
laurenjames james
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
80
Miembro desde
1 año
Número de seguidores
16
Documentos
1479
Última venta
3 días hace
LaurenJames

Welcome to My Stuvia Page! I'm, a dedicated medical doctor (MD) with a passion for helping students excel in their exams. With my extensive experience in the medical field, I provide comprehensive support and effective study techniques to ensure academic success. My unique approach combines medical knowledge with practical strategies, making me an invaluable resource for students aiming for top performance. Discover my proven methods and start your journey to academic excellence with me on Stuvia today! Hi there! I'm Lauren James, and I'm here to provide high-quality study materials to help you succeed. With a focus on clarity and usefulness, my notes are designed to make your studying easier and more efficient. If you ever need assistance or have any questions, feel free to reach out. Let's achieve your academic goals together! Contact me via MESSAGE for any assisstance. Good luck! Simple well-researched education material for you. Please rate my work and write a review GOOD LUCK IN YOUR EXAM! Feel free to tweak it based on your style!

Lee mas Leer menos
3.6

10 reseñas

5
5
4
1
3
1
2
1
1
2

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes