3, −√
3} 2. The set is empty. 3. {1, −1, 2, −2, 3, −3, 4, −4, 5, −5, 6, −6, 10, −10, 12, −12, 15, −15, 20, −20, 30, −30, 60, −60} 4. {−10, −9, −8, −7, −6, −5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} 5. It is not a well -defined set. (Some may argue that no element of Z+ is large, because every element exceeds only a finite number of other elements but is exceeded by an infinite number of other elements. Such people might claim the answer should be ∅.) 6. ∅ 7. The set is ∅ because 33 = 27 and 43 = 64. 8. It is not a well -defined set. 9. Q 10. The set containing all numbers that are (positive, negative, or zero) integer multiples of 1, 1/2, or 1/3. 11. {(a, 1), (a, 2), (a, c), (b, 1), (b, 2), (b, c), (c, 1), (c, 2), (c, c)} 12. a. It is a function. It is not one-to-one since there are two pairs with second member 4. It is not onto B because there is no pair with second member 2. b. (Same answer as Part( a).) c. It is not a function because there are two pairs with first member 1. d. It is a function. It is one-to-one. It is onto B because every element of B appears as second member of some pair. e. It is a function. It is not one-to-one because there are two pairs with second member 6. It is not onto B because there is no pair with second member 2. f. It is not a function because there are two pairs with first member 2. 13. Draw the line through P and x, and let y be its point of intersection with the line segment CD. 14. a. φ : [0, 1] → [0, 2] where φ(x) = 2x b. φ : [1, 3] → [5, 25] where φ(x) = 5 + 10(x − 1) c. φ : [a, b] [c, d] where φ(x) = c + d−c (x a) b−a 15. Let φ : S → R be defined by φ(x) = tan( π(x − 1 )). 16. a. ∅; cardinality 1 b. ∅, {a}; cardinality 2 c. ∅, {a}, {b}, {a, b}; cardinality 4 d. ∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}; cardinality 8 17. Conjecture: |P(A)| = 2s = 2|A|. Proof The number of subsets of a set A depends only on the cardinality of A, not on what the elements of A actually are. Suppose B = {1, 2, 3, · · · , s − 1} and A = {1, 2, 3, , s}. Then A has all the elements of B plus the one additional element s. All subsets of B are also subsets of A; these are precisely the subsets of A that do not contain s, so the number of subsets of A not containing s is |P(B)|. Any other subset of A must contain s, and removal of the s would produce a subset of B. Thus the number of subsets of A containing s is also |P(B)|. Because every subset of A either contains s or does not contain s (but not both), we see that the number of subsets of A is 2|P(B)|.