100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary Topic 1: Graphs and Trees - Fundamental of Computing (CSC1031)

Puntuación
-
Vendido
-
Páginas
4
Subido en
01-02-2024
Escrito en
2023/2024

Cheat Sheet and summary sheet for CSC1031 module. Topic 1 notes

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
1 de febrero de 2024
Número de páginas
4
Escrito en
2023/2024
Tipo
Resumen

Temas

Vista previa del contenido

CSC1031 – Semester 2 Examina3on




Fundamentals Of Computing


Topic 1: Graphs and Trees


Directed Graph is a pair G={N, E} consisting of


- Non-empty set N of nodes (each with a unique name)
- Set E of directed edges between notes where EÍN´N and (n,m) Î E represents edge from node n
to node m


Path in a directed graph G={N, E} is a sequence of node


n0 n1 ... nk


such that (ni, ni+1)ÎE is an edge in the directed graph G for each i=0,...,k-1.


Circuits

- Circuit is a path n0 n1 ... nk whose start and end nodes are the same, i.e. n0=nk.

Cycle

- A cycle is a circuit of length 1 or more in which you never visit the same node twice except for the
start and end.




Subgraphs

Given graphs G=(N,E) and G’=(N’,E’) we say G is a subgraph of G’ if,and only if, N Í N’ and E Í E’




Hamiltonian Cycle

- Definition: A Hamiltonian path in a graph is a path that includes all nodes in the graph.

- Note the length of a Hamiltonian cycle must be equal to the number of nodes in the graph.




1

, CSC1031 – Semester 2 Examina3on




Programming with Graphs

Given a graph with n nodes an adjacency matrix M is an n by n matrix where:

- Represent a directed edge from node i to node j by setting the entry at row i and column j in M to
the value 1.

- If no edge exists from node i to node j then the entry at (i , j) is set to 0.




Rooted Trees

- A tree is a special kind of directed graph used to model hierarchical information. A (rooted) tree is
simply a directed graph which satisfies the following properties:


§ Contains a single root node that has no edge pointing to it.
§ Every node in the tree has a unique path to it from the root node.
- A node that has no outgoing edges is called a leaf node.
- Every node except the root has exactly one ingoing edge pointing to it.
- Each node has edges to zero or more subtrees.
- Normally draw trees top down starting from the root node.




Binary Trees

- A binary tree is a tree in which each node is allowed no more than two subtrees.

- For each node in binary tree we normally identify left child and right child (depending on how tree is
drawn).

- The properties of a binary tree are the following:

1. Theorem 1: A binary tree has a maximum of 2L nodes at any level LÎN.


2. Theorem 2: A binary tree of depth d contains at most 2(d+1) -1 nodes
Proof use theorem 1
• By Theorem 1 we know at each level L=0,...,d there are at most 2L nodes.
• This gives us the sum:

20+ 21 + 22 + ... + 2d

• Can show that this sum is equivalent to 2 d+1-1 as required.




2
$5.54
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
giovanniconstantina04 Newcastle University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
10
Miembro desde
2 año
Número de seguidores
2
Documentos
6
Última venta
2 meses hace

1.0

1 reseñas

5
0
4
0
3
0
2
0
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes