100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary Statistics and Methodology (AB_1201)

Puntuación
-
Vendido
2
Páginas
47
Subido en
28-01-2024
Escrito en
2021/2022

Complete summary of the course Statistics and Methodology (AB_1201) from the 2nd year of biomedical sciences, VU Amsterdam. This summary contains all information needed for the exam, and includes all the material from the lectures and the book that was required for this course. This summary was made during my second year of biomedical sciences (2021/2022). --- Volledige samenvatting van het vak Statistics and Methodology (AB_1201) uit het 2e jaar van biomedische wetenschappen, VU Amsterdam. Deze samenvatting bevat alle informatie die nodig is voor het tentamen, en bevat alle stof uit de hoorcolleges en het boek dat nodig was voor dit vak. Deze samenvatting is gemaakt tijdens mijn tweede jaar biomedische wetenschappen (2021/2022).

Mostrar más Leer menos
Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

¿Un libro?
Subido en
28 de enero de 2024
Número de páginas
47
Escrito en
2021/2022
Tipo
Resumen

Temas

Vista previa del contenido

Statistics and Methodology
summary




1

, Recap of RBMS 3
Regression I 8
ANOVA I 14
ANOVA II 21
Regression II 25
Scienti c integrity 30
Power 35
Systematic review 40
Critical perspectives on statistics and scienti c literature 45




2


fi fi

, Recap of RBMS
THE PROCESS OF NULL HYPOTHESIS TESTING
1. Research question (based on population)
2. Hypotheses (based on population)
3. Study design and data collection
- Data is collected in a sub-sample of the population of interest
4. Descriptive statistics
- Is limited to sample
5. Inferential statistics: make inferences from the sample to the population of interest
- Based on the hypothesis, how likely is it that what was observed in the sample also holds
for the population?
6. Conclusion
7. Look back at RQ and possibly start whole process again
- Test null hypothesis (instead of Ha), because you cannot prove a negative, but you can prove a
positive by rejecting a negative
- Hypothesis testing does not reveal reality: it gives an estimate how likely it is to observe
what we observe given the null hypothesis
- Because observations/data come with a level of uncertainty, you can never accept H0 as
true/false: rather ‘retain/reject H0’
- In science, you can never prove things: only nd support for/against a certain hypothesis

RESEARCH QUESTION
- A well-formulated research question describes:
- Population
- Intervention
- Comparison
- Outcome (dependent) variables
- Study design
- Should not be too general

HYPOTHESES
- In general, two-sided hypotheses are used:
- Null hypothesis (H0): ‘no e ect’
- …=…
- Alternative hypothesis (H1 or Ha): ‘an e ect’ (can go in either direction)
- …≠…
- Direction of e ect is not speci ed in the hypotheses
- If two-sided hypotheses are (biologically) implausible, one-sided hypotheses are used:
- Null hypothesis (H0): ‘smaller than’ or ‘larger than’
- … < … or … > …
- Alternative hypothesis (H1 or Ha): ‘larger than or equal to’ or ‘smaller than or equal to’
- … > … or … < …
- Direction of e ect is speci ed in the hypotheses

RESEARCH DESIGN
- RQ: causal e ect or association?
- Dependent variable(s)
- Measurement
- Type (nominal, ordinal, discrete, continuous)
- How many?
- Independent variable(s)
- Measurement
- Type (nominal, ordinal, discrete, continuous)
- How many?
3


ffff fiff fi ff fi

, - Manipulation
- Compare groups or conditions? How many?
- Are measurements/manipulations: dependent/within-subjects/paired or independent/
between-subjects/unpaired?
- Types of research designs in biomedical research:
- Observational: involves observations without manipulation and without randomization
(observe as is), and does not allow conclusions on causal e ects (only on associations)
- Cross-sectional: all measurements happened at the same time
- Case control: measure outcome and look back in time to nd possible predictors
- Prospective: follow sample over time for a certain period
- Experimental: includes some sort of manipulation and randomization, and allows
conclusions on causal e ects
- Randomized control trial: participants are randomly assigned to one of more
groups, and a participant only takes part in only 1 condition (intervention or control)
- Cross-over design: participants are randomly assigned to an order of 2 or more
groups, and a participant takes part in all conditions
- Order in which a participant takes part in a certain group is randomly assigned

DESCRIPTIVE STATISTICS
- Goal: to present, organize and summarize data observed in the sample
- Measures of central tendency: mean, median, mode
- Measures of dispersion/variability: (interquartile) range, variance, standard deviation
- Graphs and gures

INFERENTIAL STATISTICS
- Goal: to draw conclusions about a population based on data observed in a sample, by using
statistical tests
- Statistical test: a procedure to decide whether a hypothesis about the population may or
may not be supported by the results of the sample
- How likely are we to observe the data we observed in our sample, if our null hypothesis is
true?
- Pr(data|H0)?
- = very unlikely -> reject H0
- = likely -> retain H0
- Statistical test results in a p-value: probability of the data given that the null hypothesis is true
- Very unlikely: reject the null hypothesis, accept the alternative/experimental hypothesis
- Likelihood is de ned by a threshold of α=0.05 (5%): a p-value <0.05 is regarded as
‘unlikely enough’ to reject the null hypothesis
- Test statistic = (point estimate - expected value) / SE
- Test statistic (e.g. Z, Chi2, t): deviation of the data from the data under null hypothesis
- Point estimate (e.g. mean or proportion): observed point estimate of the sample
- Expected value: expected value under the null hypothesis
- SE (standard error): precision of the point estimate
- One-sample t-test:
- Null hypothesis: μ0 = speci c value
- t = (x - μ0) / se
- Se = sd / √n
- x: mean of sample
- μ0 = value under the null hypothesis
- E.g.: Do students have a healthy blood pressure?
- Independent samples t-test (aka 2-sample t-test):
- Null hypothesis: means from 2 groups are equal: μ1 = μ2
- t = (x1 - x2) - (μ1 - μ2) / sepooled
- sepooled = √((sd12 / n1) + (sd22 / n2))
- x1: mean of group 1
- x2: mean of group 2
- μ1 - μ2 = 0 under the null hypothesis
4



fi fi ff fi fiff
$12.07
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
SummaryLin Universiteit van Amsterdam
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
76
Miembro desde
2 año
Número de seguidores
34
Documentos
25
Última venta
4 semanas hace

4.0

7 reseñas

5
3
4
1
3
3
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes