100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Microeconomics I summary

Puntuación
-
Vendido
2
Páginas
40
Subido en
14-01-2024
Escrito en
2022/2023

Dit is een samenvatting van het vak Microeconomics I.

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
14 de enero de 2024
Número de páginas
40
Escrito en
2022/2023
Tipo
Resumen

Temas

Vista previa del contenido

Lecture 1

What is microeconomics?

 Microeconomics has two areas:
o Analyzing the behavior of individuals and firms
o Explaining market structures and price setting
 Microeconomics uses models based on ‘rationality’
 Models are expressed by mathematical formulas
o Advantage: unambiguous
o Disadvantage: limited, complex
 Model is ‘’locally’’ valid
 Model can only be used for its specific purpose

What is an economic model?

 Model is a simplified representation of real life
 Trade-off between applicability and manageability
 Example 1: firms have the impression that sickness absenteeism of workers is sometimes
longer than necessary
o Sick workers continue to receive salary
o Expensive for firms
o No incentive to start working soon
o At some moment a certificate from doctors confirming the sickness is required
 Model prediction is that requirement of doctor’s certificate reduces the length of sickness
absenteeism
 Swedish experiment:
o Born on even day: doctor certificate on 15 th day (treatment group)
o Born on odd day: doctor certificate on 8 th day (control group)
 Hartman, Hesselius & Johansson (2013)
o Sick workers recover faster if a doctor’s certificate is required earlier
o But the additional costs for doctors to write certificates are higher than the reduced
salary payments to sick workers during their absenteeism
 Sometimes a model is simple logic reasoning
 Often mathematical formulas are used to build the model

Why models?

 Goal of models is to explain or predict the change
 Who uses economic models?
o CPB, ECB, AFM, ING, consultancy firms, ministries

Demand, supply and equilibrium

 Equilibrium  demand = supply
 Supply depends on:
o Production technology
o Costs of inputs
o Market price
 Demand depends on
o Preferences of consumers

, o Income of consumers
o Market price
o Prices of other goods
 Prices cause that markets clear
o Supply > demand  price goes down
o Demand > supply  price goes up

Preferences

 Consumers buy bundle of goods
 Allocating scarce resources: size of the bundle is limited by the budget
 Budget is used to:
o Buy consumer goods
o Save
o Enjoy leisure (labor supply decision)
 Consumers make choice for bundle of goods on rationality
 Maximize utility
 Preference decides ‘amount of’ happiness (utility) a consumer derives from a bundle of
goods
 Preferences differ between consumers
 Assumptions:
o Completeness = consider a bundle A and bundle B, consumer either has preference
bundle A or bundle B or is indifferent. It rules out the ‘I don’t know’.
o Transitivity = If a consumer prefers bundle A over bundle B and bundle B over bundle
C, then consumer preferences bundle A over bundle C
o More is better = if bundle A contains for all goods at least the same amount as
bundle B and for at least one good more, then a consumer prefers bundle A over
bundle B

Indifference curve

 A consumer who has the same preference for two bundles, is indifferent between these to
bundles
 Indifferent curve = collection of all bundles of goods for which the consumer is indifferent
 Economists use utility to describe the valuation of a bundle to a consumer
 All bundles on a indifference curve have the same utility
 Properties of indifference curve
o Downward sloping always
o Indifference curves can never cross
o Further away from the origin implies a higher utility
o Each bundle belongs to an indifference curve

Marginal rate of substitution

 Indifference curve is downward sloping
 So, reducing the amount of good X van often be compensated by increasing the amount of
good Y
 Marginal rate of substitution: extent to which goods can be trated against each other
without affecting utility
o MRS = delta qy / delta qx

,  MRS is the derivative of the indifference curve
 Indifference curves of perfect substitutes (MRS = c)
 Indifferent curves of perfect complements (MRS = 0 or MRS = infinity)  car and gasoline

Lecture 2

Utility

 Preferences are summarized in a utility function
 Gives a numerical value to a bundle of goods
 Utility is an ordinal measure
o Magnitude of utility is not relevant, only the (relative) ranking of bundles is
important
 It is unimportant if utility of first bundle is 100 and second is 1 or first is 51 and second is 50
 The only thing that is important is that the one bundle has a higher utility then the other

 The utility function = U(qx,qy)
 If a consumer prefers a bundle U(qx,qy) over a bundle U(qx’,qy’) then: U(qx,qy) > U(qx’,qy’)
o Qx’ and qy’ = different quantity
 If a consumer is indifferent between bundles qx,qy and qx’,qy’, then: U(qx,qy) = U(qx’,qy’)
 Indifference curves: all bundles (qx,qy) for which U(qx,qy) = U with a bar above
 A utility function must satisfy the assumptions ono preferences
 Completeness: utility function assigns a value to each bundle of goods
 Transitivity: if U(qx,qy) > U(qx’,qy’) and U(qx’,qy’) > U(qx’’,qy’’) than U(qx,qy) > U(qx’’,qy’’)
 More is better: if qx > qx’ and qy > qy’ then U(qx,qy) > U(qx’,qy’)

 Marginal utility describes how much utility increases if the amount of a good in the bundle
increases with one
∂U (qx , q ¯ y)
 Marginal utility (of good X) = Mux = >0
∂ qx
 More is better implies that marginal utility cannot be negative
 q¯y implies that the amount of good Y stays constant

 Marginal rate of substitution
 How many additional units of good Y are required to replace one unit of good Y?
 ∆qy is the change in the quantity of good Y
 Changing the bundle, while keeping utility constant: ∆U = ∆qyMUy + ∆qxMUx = 0
 Then the marginal rate of substitution follows: MRS = − ∆qy/ ∆qx = MUx /MUy
 When MRS is small, only a few additional goods of Y are necessary to replace one unit of
good X, the marginal of good X is low compared to the marginal utility of good Y


Budget

 Limited budget: constraint on the amount of consumption
 Let B be the budget of the consumer for coffee and cookies
 Qx is number of latte macchiato, qy is amount of chocolate chip cookies
 pxqx + pyqy ≤ B
 Opportunity set: All bundles (qx,qy) that can be bought with the budget

, 1 Px
 Budget line: Pxqx + Pyqy = B ⇒ qy = B− qx
Py Py

 Marginal rate of transformation: how much the consumer should sell of good Y to be able to
buy one additional unit of good X within the same budget
 MRT = − ∆qy /∆qx = px / py
 MRT determines the slope of the budget line
 MRT does not change if the budget increases, only the opportunity set expands
 MRT changes if the price of one good changes

Optimal bundle

 Utility maximization within restrictions: pxqx + pyqy ≤ B
 The bundle of goods is optimal if:
o The bundle lies on the budget line: pxqx + pyqy = B
o The marginal rate of substitution equals the marginal rate of transformation:
MRS = Mux / MUy = px / py = MRT
 If the additional utility differs you can trade goods in your bundle to increase utility
 Therefore, MRS = MRT (and it does not matter how you spend an additional euro)

Corner solutions

 This gives the interior solution  does not take into account of the restrictions that qx ≥ 0
and qy ≥ 0
 Possibility of a corner solution, better to only buy one good
 For example, qx = 0 and qy = B / py
 When qx = 0  MRS is not MRT

 Corner solution when indifference curves are relatively ‘flat’
 But also in case of non-convex indifference curves
 If MRS = MRT, then qx ≥ 0 en qy ≥ 0 but solution is not optimal

 Concave indifference curves always give corner solutions
 But they are unlikely
 Consumer has a strong preference for only a homogenous bundle of goods instead of a
differentiated bundle

 Compare outcome of maximization of utility with corner solutions
 The optimal bundle can also be determined using the Lagrange multiplier method:
o L(qx, qy, λ) = U(qx, qy) − λ(pxqx + pyqy − B)
o The Lagrange method finds an optimum if the Lagrange function is convex (when
concave it finds a minimum).
 Determining the optimal bundle
o Determine bundle with MRS = MRT
o Compare utility in corner solutions with utility when MRS = MRT
$6.62
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
femkehillen04 Vrije Universiteit Amsterdam
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
26
Miembro desde
1 año
Número de seguidores
3
Documentos
11
Última venta
6 días hace

3.0

1 reseñas

5
0
4
0
3
1
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes